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Notation and terminology

Transformations

In this thesis, extensive use is made of the temporal Fourier Transform. The forward
temporal Fourier Transform F(w) of a function of time f(¢) is defined as

+o00
F(w) = F(t) exp(—juwt)dt. (1)

The inverse temporal Fourier Transform retrieves the time-function based on the
frequency spectrum F'(w):

+00
ft) = i/ F(w) exp(jwt)dw. (2)

2r J_ o

If f(t) is a real function, it holds that

+oo
f@) = %Re [/0 F(w)exp(jwt)dw]| . (3)

As a consequence, no negative values of w have to be taken into account when the
considered function is real valued in time.

Terminology

¢ A function f is called time-invariant if the evaluation of f does not depend on
the time it is evaluated, i.e.

f(to) = f(t1). (4)

¢ Einstein summation convention: a repeated subscript in an expression implies
summation:

)\jl/j = A1 + Ao + Agrs. (5)




xii

Notation and terminology

The partial derivate of a function with respect to time — J; — is used when
the considered function is also dependent on another parameter except the
time.

The absolute time-derivative — d; — is used when the function it is applied
to only depends on the time.

The delta-function §(¢) is defined as follows:
8(t) = 0ift#£0, (6)
/ o(t)dt = 1,for any € > 0. (7
t=—c¢

According to Kreyszig (1972), "a function f(t) is piecewise continuous on a
finite interval a < ¢t < b, if it is defined on that interval and is such that the
interval can be subdivided into finitely many intervals, in each of which f(¢) is
continuous and has finite limits as ¢ approaches either end point of the interval
of subdivision from the interior”.

A function f(t) is a causal function when

f®) =0, fort <0. (8)
If a quantity is written as A(w)exp(j8(w)) with A(w) and B(w) real valued,
then A(w) is called the amplitude and B(w) is called the phase.

The term interface is used for denoting the boundary separating two regions
with different medium parameters.
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time [s]

position of particle «

instantaneous velocity of particle a [m s™!]
mass of particle alkg]

elementary time-invariant domain

number of particles in an elementary time-invariant domain
volume of an elementary time-invariant domain
number density [m=?]

volume density of mass [kg m ™

drift velocity [m s™]

mass flow density [kg m=2s~!]

mass flow density rate [kg m 2s 2]
time-variant domain

volume force density[N m~3]

volume force [N]

traction [N m~3]

surface force [N]

linear momentum [kg m s™!]

acoustic pressure [N m~?] or [Pa]

unit normal vector

frequency [s7!] or [Hz]

angular frequency [rad s~ '], w = 2n f
imaginary unit, j = /=1

volume source density of volume injection rate [s™!]
induced part of the cubic dilatation rate [s~!]
compressibility [Pa™!]

inertia relaxation function [kgm™—?s™!]
compliance relaxation function [Pa~'s™']
acoustic velocity [m s™!]

specific acoustic impedance [kg m™2 s71]
coefficient of frictional force [kg m=2 s71]
cocfficient of bulk inviscidness [Pa=! s7!]
generalised volume density of mass [kg m™)
generalised compressibility [Pa™"]

gencralised acoustic velocity [m s™!)
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QY = volume density of dissipated power [Pa s™!]

Wet = total acoustic power delivered by sources [N m s~!]
P* = net acoustic power flow [N m s™!]

Wkin = Kkinetic energy of the acoustic wavefield [N m]

Wdet deformation energy of the acoustic wavefield [N m)]
= dissipated acoustic power [N m s7?]

attenuation coefficient [m™]

propagation factor

= reflection coeflicient at interface i + 1 between layers ¢ and 7 + 1
transmission coefficient at interface 7 + 1 between layers 7 and 7 + 1
source spectrum

transfer function at depth z;

interface-free transfer function at depth z;
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Chapter 1

Ultrasonic inspection of laminated materials

In this first chapter, the topic of this thesis is situated in a more general context.
The benefits of the research project are briefly mentioned. Next, an outline of this
thesis is given.

1.1 Advanced ultrasonic inspection

In this section, the importance of ultrasonic reflection measurements is discussed.
This technique is placed in the field of inspection techniques, and it is explained
when it is appropriate to use such an inspection technique. Further, the benefits of
advanced signal processing are given.

Special attention is paid to the inspection of aircrafts, and more specific to the
laminated materials these aircrafts can be composed of.

1.1.1 Importance of inspection

In many disciplines, the inspection of materials, accessories and final products is of
great importance. Inspection techniques can provide information about the quality
of products. Depending on the nature and the intended use of the product, the qua-
lity can influence the economical aspects of the material and it can have consequences
for the functionality and safety of the product.

Although inspection techniques may be rather costly, their use can decrease the
total costs of products. When a final product is composed of different components,
it is advantageous that possible defects in the components are discovered as soon as
possible.

The profit of a product partly depends on the quality of the constituting parts.
An inspection of these accessories gives an indication about some of the properties.
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Among others, these properties include

e mechanical properties: a material might be strong or weak, hard or soft etc;

o density: the density of a material is of particular interest in the aircraft indus-
try, where heavier materials hinder the elevation;

e the behaviour of the material under extreme conditions: materials that are
used in aircrafts may be exposed both to extremely high and extremely low
temperatures;

e the cohesion between the different components which is of major importance
in laminated materials, where for example unwanted void inclusions between
two layers can affect the reliability of the material.

When a final product has to meet specific criteria — e.g. an aircraft has to be
able to carry a certain load —, the constituting parts also have to meet specific
requirements. If one of the materials used in an aircraft does not meet the necessary
requirements, this can have serious consequences concerning the safety. Therefore,
it is important that the properties of the crucial parts of the aircraft are monitored
on a regular basis and that defects are detected as soon as possible.

1.1.2 Non-destructive inspection

Inspection techniques are generally classified into two groups. If the target material
is affected by the test, the technique is called a destructive inspection technique. On
the other hand, if after performing the test none of the properties are changed, use
is made of a non-destructive technique.

In general, destructive inspection techniques are easier to perform and are often
cheaper than non-destructive techniques. Destructive inspection is often used in
combination with statistical methods. A test is performed on a subset of a number
of target materials, and the results are extrapolated to the entire set. For an overview
of destructive techniques, the reader is referred to De Meester (1988).

In many cases, however, it is important that the target material remains intact after
testing, which requires the use of a non-destructive inspection technique. All critical
parts in aircrafts, for example, have to be inspected and they have to be used after
that inspection.

The goal of non-destructive inspection (NDI) techniques is to quantify a material
parameter without affecting this parameter. In many NDI-techniques, use is made
of indirect measurements. A physical relationship between the measured quantity
and the desired parameter is then used for quantifying the desired parameter.

This thesis is focused on ultrasonic non-destructive inspection techniques.
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1.1.3 Ultrasonic inspection

Due to the increasing interest in non-destructive inspection, the number of NDI-
techniques also increases. An overview of these techniques and their application
fields can be found in Bray and Stanley (1997). There is no ideal technique which
covers all types of defects in all types of material. Which technique one has to use
depends on a number of factors, including

¢ the parameters that have to be investigated;

e the accuracy with which the parameters have to be obtained;

the available time and money;

the size, nature and specific requirements of the target;

the nature of possible flaws.

This thesis is concerned with a particular non-destructive ultrasonic inspection tech-
niques, based on reflection measurements. In an ultrasonic inspection experiment,
an ultrasonic wave is generated  e.g. by means of a piezo-electric transducer which
converts an electrical pulse into an acoustic sound wave. The wave travels through
a coupling medium, and interacts with the target material. Due to this interaction,
a scattered ultrasonic wavcfield arises. The characteristics of this resulting wavefield
depend on the characteristics of the original wavefield and on the acoustic param-
eters of the target. Therefore, this method is suited for quantifying the acoustic
parameters of the target material — and, indirectly, the parameters that can be
related to the acoustic parameters.

Current C-Scan inspection

Laminated materials — as used in the aerospace industry — are often inspected
with a C-scan system. Traditional C-scan measurements are studied by a.o. Co-
enen (1998). Typically, two transducers are used. The first transducer generates an
ultrasonic wave, while the second transducer, placed at the other side of the tar-
get, records the transmitted wavefield. After the wavefield has been recorded, the
transducers are moved to a next position. If the transducer pair is moved in two
dimensions, the series of measurements on different positions is called a C-scan!. A
traditional C-scan setup is shown in Figure 1.1. For each measurement, the atten-
uation level is calculated. The attenuation level is defined as the logarithm of the
ratio of the maximum absolute value of the input signal — generated by the first

I'The term A-scan is used for a single measurement, and a B-scan is obtained when the trans-
ducers are moved in one dimension.
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Fig. 1.1 Traditional C-scan setup. The transducers move simultaneously in two dimen-
sions parallel to the target. For each position of the transducers, a measurement
can be done.

| gate |

I ]

I

I !

I 1

I I

' I

I I

max
—_— —_—
time [s] time [s]
(a) Signal emitted by the source trans- (b) Signal obtained by the receiver

ducer transducer

Fig. 1.2 Signal at source transducer and receiver transducer. A time-window — or gate
— 14s placed at the recewver transducer, and the mazimum absolute value of the
signal in that time-window 1s preserved.

transducer — and the maximum absolute value of the signal received by the sec-
ond transducer. Optionally, the second value is replaced by the maximum absolute
value of the received signal over a fixed time-window. This principle is illustrated in
Figure 1.2.

Generally, the obtained attenuation levels for the different positions at the target are
rendered in a 2D-plot. A typical C-scan measurement then looks like Figure 1.3(a).

Dark regions indicate a high attenuation level, whereas light regions indicate less
attenuation. A high attenuation may be due to a high porosity or a void-inclusion,
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y [m]
—
x [m]
attenuation [dB]
(a) C-scan image, regions with a high attenuation (b) histaogram

are dark coloured

Fig. 1.3 Ezample of a C-scan image and histogram.

which are both undesired in construction materials. Therefore, regions with a high
attenuation level are considered dangerous. When there are too many points with a
high attenuation level the material is rejected.

Further analysis of the C-scan image can be done by means of the histogram — as
shown in Figure 1.3(b). The attenuation range is subdivided into a finite number
of intervals. The number of sample points that occur in each attenuation interval is
calculated and the result is shown in the histogram.

1.1.4 Advanced processing

Although a complete time trace is obtained for each measurement position, in C-
scans only one number is preserved for each measurement — the maximum absolute
value that occurs in a pre-defined time-window. The other data arc not processed,
although they contain useful information. In this thesis, an advanced processing
method is described. Applying this method on the complete time trace can reveal
more detailed information about the region where the measurement was done. In
the case of laminated materials, it is possible to indicate in which layer possible
attenuation effects occur.

Current C-scan systems are based on transmission measurcments. In a number of
cases, however, it is not possible to access the target material from two opposite
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sides. Ultrasonic inspection can still be performed, but the transducer that emits
the source signal also has to record the scattered wavefield — or a second transducer
has to be placed at the same side of the material. It is clear that the scattered wave-
field at one side of the target will be different from the scattered wavefield at the
other side of the target. Principles and techniques used to detect the attenuation
in the material from transmission measurements no longer hold for reflection mea-
surements. Therefore, the model described in this thesis will be based on reflection
measurements — although the principles the method is based on can also be used
in transmission measurements.

As a consequence, the new model both enhances the quality of ultrasonic measure-
ments, and it solves a practical problem.

In order to obtain processing techniques that are based on wavefield propagation
and reflection, it is necessary to understand these principles. A close examination of
the interaction of an ultrasonic wave with a target material can provide information
that then can be used for the development of processing techniques for inspecting
target materials where only single-side access is possible, or where more information
about the constituting layers is desired.

It will be shown in this thesis that the interaction of an ultrasonic wave with a target
can rather easily be described when this target consists of a finite number of homo-
geneous, parallel layers - so-called laminated materials. Based on this description,
the inverse problem can be solved: starting from the measured scattered wavefield,
it is possible to obtain the material parameters of the target.

Although the algorithms developed in this thesis can be applied to laminated mate-
rials in general, they are illustrated on Glare configurations. Glare is a fibre metal
laminate developed at the Faculty of Aerospace Engineering of the Delft University
of Technology — sce Appendix A.

1.2 OQutline of this thesis

In this thesis, the phenomenon of wavefield propagation in layered media is exam-
ined. Knowledge of this phenomenon is required for the development of algorithms
and software applications that provide useful information based on the result of an
ultrasonic measurement.

The flow chart in Figure 1.4 clarifies the relationships between the different aspects
of the research.

In Chapter 2, a forward model is discussed that describes the interactions that will
take place when an acoustic wave is sent through a layered material. The model is
based on some fundamental aspects of physics, and it holds for a variety of cases.
This general model is too complex for performing numerical simulations. Therefore,
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forward
inverse
‘ software
application acquisition & processing
data

quality control

Fig. 1.4 Different aspects in the development of an application for the advanced process-
ing of data obtained by ultrasonic reflection measurements. Both the quality of
the algorithms and of the measured data coniribute to the quality of the inspec-
tion results.

somle assumptions are made step by step, in order to arrive at a model that is valid in
layered media, where the constituting materials are considered to be homogeneous.
Based on the developed model, some simulations are performed. These simulations
are based on configurations that are often used in practice — the paramecters for the
constituting layers are chosen as realistic as possible. The principles of a simulation
are given in Figure 1.5(a). Based on the acoustic parameters of the different layers,
the geometrical configuration and the used source signal, the resulting scattered
wavefield is predicted by the forward model.

In the third chapter, experimental measurements are discussed. The inversion algo-
rithms that will be developed in the subsequent chapters will pose some requirements
on the quality of the data. In this chapter, the quality of the data for different con-
figurations is examined. First, the devices that convert the acoustic wavefield into
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resuit

(a) The forward theory links the acoustic parameters with the resulting wavefield

result

20 L
21

22

23
Z4

z

—

(b) The inverse theory links the measured wavefield with the acoustic parameters of the
material. A-priori information can enhance the quality of the result.

Fig. 1.5 Forward and inverse model.

a computer-friendly representation are discussed. The principles of transducers are
explained. Different transducers are tested and compared against each other, and
the pro’s and con’s are given.

Further, some tools are introduced for pre-processing the data. It is shown that the
quality of the data can significantly be enhanced by combining different measure-
ments. The pre-processed data will be used as the input for the inversion algorithms.
Pre-processing is the first step in the chain, and a very important one. It will be
shown that errors occurring in the beginning of the processing-chain will inflate and
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disturb the final result.

The measurements are compared with the results of the simulations performed in the
second chapter. Although the similarity between the predicted and the measured
signal is not a proof that the used model is valid, it is a strong indication for the
usefulness of the model for the considered configuration.

The next two chapters describe two algorithms that retrieve the acoustic parameters
for each layer of the inspected material. For this purpose, the measured wavefield
and the used source signal have to be known. The principle of inversion is shown in
Figure 1.5(b).

The algorithm described in Chapter 4 is the Recursive Direct Inversion algorithm.
It is based on a direct inversion of the formulas that form the basis for the forward
algorithm, developed in Chapter 2. Tt is a recursive algorithm since each step of
the algorithm only gives information about the current top-most layer. Information
about the other layers is then obtained by performing the next recursion step on
the result of an climination-process, which eliminates the influence of the current
top-most layer.

In order to deal with some practical problems, a number of mathematical and sta-
tistical tools are used — i.e. for enhanced peak detection.

The usefulness of the algorithm is first tested on simulated data, and later on mea-
sured data.

A sccond inversion approach is given in Chapter 5. In this chapter, a method is
described for obtaining the acoustic parameters of each layer using an iterative pro-
cedure. Starting from an initial sct of expected parameters, the iterative algorithm
will give a new set of acoustic parameters. The ncw set will be "better” than the
old set, and it is expected that the obtained series converge towards the real set of
acoustic parameters.

In the last chapter it is concluded that the model described in this thesis agrees
with experiments, and the developed inversion techniques can be used to obtain the
material parameters of the different layers.

Finally, some directions are given for new research. The main principles of the model
described in this thesis are also used in seismic exploration. The application of other
techniques used in seismics — in particular multi-offset experiments — may lead to
improvements in the field of ultrasonic inspection.
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Chapter 2

The forward model

In this chapter the interactions between an acoustic wave and a laminated material
are studied. First, relationships between microscopic phenomena and macroscopic,
observable quantities are derived. The theory is then applied to the special case of
acoustic wave propagation in laminated materials. Nexzt, an algorithm is developed
in order to predict the acoustic response of a laminated material on a known source.
Finally, this algorithm is used to perform simulations on configurations that will be
used in practice.

2.1 Acoustic wave theory

The result of a mecasurement is a series of numbers representing one or more macro-
scopic quantities — e.g. the drift velocity v or the acoustic pressure p — that are
measured as a function of a variable parameter — e.g. the time ¢, or the position
x. In the development of an algorithm for performing simulations, extensive use is
made of these macroscopic quantities. It is therefore necessary that the macroscopic
quantities are well-defined and have a physical meaning.

In this section, a model will be built that allows to predict the macroscopic acoustic
quantities based on the acoustic source and the knowledge of the acoustic parameters
of the material. It should be stressed here that the theory will be developed for
an acoustic medium. An acoustic medium is capable of carrying compressional
forces. The term acoustic waves is often used for denoting waves associated with
compressional forces. An ideal fluid is a fluid that can only support compressional
forces, and that will not react when a shear force is applied —— as a consequence, it is
an acoustic medium. Solid media can also support shearing forces. In the latter case,
both compressional and shear waves may occur, and conversions between these two
types may occur at interfaces. These media are called elastic media. A description
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of the elastic wave equation can be found in Achenbach (1973), Aki and Richards
(1980), Wapenaar and Berkhout (1989) and applications for layered media are given
by Brekhovskikh (1980) and Kennett (1983).

Although target materials like Glare are capable of carrying shear forces, an acoustic
approach is still valid in the case the path followed by the incident wave is always
perpendicular to the interfaces. In this case, no conversion from compressional forces
into shear forces occurs. This condition is satisfied if

e the target material is embedded in an ideal fluid and the path followed by the
incident wave through this fluid is perpendicular to the target boundary — as
a consequence, no shear waves will enter the target,

o the layers are parallel to each other — as a consequence, incident compressional
waves will not convert into shear waves.

2.1.1 Continuum hypothesis

In this subsection, the relationship between macroscopic and microscopic quantities
is investigated. What is measured — a series of macroscopic quantities — is a
consequence of the presence of microscopic structures and the interactions that exist
between these structural elements.

The wave theory developed in this section makes abstraction of the microscopic
layer, and tries to enclose all microscopic quantities in space- and time-dependent
macroscopic parameters. It turns out that the continuum hypothesis is an essential
condition that has to be satisfied in order to define macroscopic quantities.

microscopic quantities

An elementary time-invariant domain D, (x.), located in the investigated medium
and with geometrical centre in x. is considered — see Figure 2.1. In this domain,
elementary particles are labelled with the superscript . Quantities that are directly
related to these particles are called microscopic quantities, while quantities that
are defined as functions of the entire elementary domain are called macroscopic
quantities. The latter are often written as functions of the centre x. of the elementary
domain.

The position of these particles may change in time and is given by x*(t) — which is a
microscopic quantity. This implies that the particles are chosen sufficiently small —
their location is defined by one single point. Since even the smallest known particle
occupies a volume, this mathematical requirement can never be met. Therefore,
the microscopic quantity x®(¢) has to be considered as the result of an averaging
operation. It will be shown later in this section that also the macroscopic quantities




2.1 Acoustic wave theory 13

are the result of an averaging operator acting on the microscopic quantities.

Averaging operators are used since it is in general not possible to assign a phys-
ical measured quantity to a well-defined point in space-time. Since a device used
for measurements has a non-vanishing behaviour in space and time, the measured
quantity is an average of the physical function over the measuring domain. Schwartz
(1957) introduced the concepts functional and test function. A measured quantity
is the result of a functional f acting on a particular test function ¢:

+o00
(f,p) = / F(x, t)o(x, t)dxdt. (2.1)

—00

The concept of averaging operators is discussed by Schwartz (1957) and Zemanian
(1965), and used in wavelet analysis by Herrmann (1997) and Dessing (1997).

If the functional f is chosen to be the position of the evaluated point, the particle
position x* can be defined as

x* = / xp®(x)dx (2.2)
XERS

where the test function ¢® vanishes outside the particle .

Each particle has an instantaneous velocity w®(t)[ms~!] that is a three-component
vector defined as

wo(t) = dyx®. (2.3)

In addition, it is possible to assign a time-independent property to each particle,
indicating its mass m*[kg).

The number of particles in the elementary domain D.(x.) is, at a given time ¢,
denoted by N (x,,t), and the volume of the domain is given by V.(x.)[m3] . Note
that the number of particles is a time-dependent property, since particles can enter
or leave the time-invariant domain. The volume, however, only depends on the
geometrical properties of the domain and is therefore time-invariant.

macroscopic quantities

As already been mentioned, macroscopic quantities can be seen as the result of an
averaging operator acting on microscopic quantities, by means of

M(x,t) = (m, @) (2.4)

IThe notation x, is used to indicate that the quantity is assigned to the centre of an elementary
domain D.. It does not only depend on the position of the centre itself, however, but also on the
other particles located in the elementary domain. For simplicity, the subscript . will be omitted
from here onward.
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Fig. 2.1 Elementary time-invariant domain D. with centre X. x* and x” are particle
positions, and w® and wP are the instantaneous velocity vectors of the consid-
ered particles. The region outside D. is denoted by DL..

where M represents a macroscopic function and m represents a microscopic func-
tional.

The test function ¢ is non-zero in a non-vanishing subdomain of (x,t) € R%. Using
the above-mentioned theory, ¢ will vanish in D, — the region outside the elementary
domain D.. From Equation (2.4), it is clear that a macroscopic quantity is associated
not only with a microscopic quantity, but also with a test-function — or with the
size of the elementary domain it is defined over.

The first macroscopic quantity introduced here is the number density n(x,t)[m3],
which is defined in a general form as

N
n(x,t) = / o(x',t) Z I(x" — x*)dx'dt'. (2.5)
(x',t')€R4

a=1

A test function restricts the space-time area where the functional should be evalu-
ated. By choosing the test function as

Mt) ifx' €D
x' 1) = Ve € 2.6
l ) {0 ifx' e DL (26)
it follows from Equation (2.5) that
1 &
n(x,t) = — / o(x' — x*)dx’, (2.7)
€ a=17X€D.
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and a more simple definition is obtained:

Ne(x,1)

n(x,t) = V)

(2.8)

The number density and the other macroscopic properties in a considered point x do
not only depend on the microscopic quantities in x, but are the result of an averaging
process in a small domain D, around x. Indeed, both the number of particles N,
and the volume V are defined in and dependent on an elementary domain they are
the centre of.

In what follows, it is important that the number density is a piecewise continuous
function of the position x. This is assumed in the continuum hypothesis.

Assumption 1: Continuum hypothesis

B The number density function n(x, t), as defined in Equation (2.8), and the other
macroscopic quantities that will be introduced in this section are piecewise
continuous functions of x.

In order for this assumption to be valid, the elementary domain D, (x) has to be cho-
sen sufficiently large that discontinuous spatial variations in the microscopic quan-
tities average over the total elementary domain. On the other hand, D.(x) has to
be sufficiently small in order to be able to study the variations of the macroscopic
quantities over the domain of interest.

If the continuum hypothesis is satistied, the total number of particles in a domain
D can be written as

N(D,t) = /ED(L) n(x,t)dV. (2.9)

The continuum hypothesis is needed here since only piecewise continuous functions
are integrable.

A second macroscopic quantity is the volume density of mass p(x, t)[kgm 3], which
is defined as

Ne(X,t)

p(x,t) = Vix) Z m®. (2.10)

a=1

The drift velocity v(x,t)[ms™!] in the centre of an elementary domain is related to
the instantancous velocity of the particles in the elementary domain by

1 N (X 1)

v(x,t):m > w(b), (2.11)

a=1
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The mass flow density ¢(x,t)[kg m~2s7!] is given by

Ne(X,1)
o(x,1) (2.12)
From this, the mass flow density rate ¢(x, t)[kgm=2s=2] is introduced via
dy / o(x,t)dV = o(x,t)dV, (2.13)
x€D(t) x€D(t)

where D(t) is any domain of intercst. Note that Equation (2.13) is only valid if
¢(x,t) is a piecewise continuous function of x.

particle classification

Until now, all definitions hold for a medium containing elementary particles of any
sort. The particles may or may not all have the same microscopic quantities.

In many cases, the particles can be classed in a few types, with each particle of type
B having the same mass m$ = mp. The classification is evident in the case of a
macroscopic homogeneous material that consists of two microscopic structures.
Even if all particles have a different mass, this classification can be done since the
number of particles in an elementary domain has to be finite — since they all have
a non-zero mass.

The number of particles of type B in the elementary domain D.(x) is denoted by
Ne.B(x,t). Analogous to the definition in Equation (2.8), the number density of
particles of type B is defined by

M,B(x3 t)
V. (x)

from which it also follows that the total number density is the sum of the number
densities of the different particle types:

np(x,t) = ; (2.14)

M
n(x,t) = Y np(x,t), (2.15)
B=1

with M the number of particle-types present in the elementary domain D, around
the considered point x.

The volume density of mass for the particles of type B is defined as
B(x t

S5

= nB(x, t)mB, (2.16)

PB (X, t)
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where use is made of Equation (2.14).

The total volume density of mass can now be written as the sum of the volume
densities of mass for the different particle types:

| XM
p(x,t) = Z mpN p(x,t)

«(x) B=1

At

mBnB(x, t)

©ERNE

pB(X,t). (2.17)

o}
]

1

According to the definition of particle-types, the particles of type B have the same
mass, but their instantaneous velocity may still vary. The drift velocity for particles
of type B is given by

Ns,s(x,t)
1 (a3
vp(x,t) = N oD az::l w(t). (2.18)

The mass flow density for the particles of type B is defined as
1 Ne,B (X,t)

Palet) =g D muwh(t), (219)

=1

or, using Equations (2.16), (2.14) and (2.18),
bp(x,t) = pp(x,1)vE(X, ). (2.20)

Using Equations (2.12) and (2.19), the total mass flow density is now written as the
sum of the mass flow densities of the different particle types:

M
P(x,t) = D pp(x,0). (2.21)

B=1

2.1.2 The equation of motion

In a fluid, volume forces act on each particle. A typical force is the gravitational
force, acting on each particle, but also other types of forces may be present -- e.g.
external sources. The volume density of volume force is given by f(x,)[Nm~2] . If
this quantity is a piecewise continuous function of x, the total volume force FV in a
domain D can be written as

FY(D,t) = / £(x,t)dV. (2.22)
x€D(t)
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Surface forces acting on the boundary 9D of a domain D are caused by a traction
vector t(x,¢). If this traction is a piecewise continuous function over the boundary
9D, the surface force FS can be written as

F5(D,t) = / t(x,t)dA. (2.23)
x€8D(t)

According to Newton, the net result of surface and volume forces causes a change
in the linear momentum of a fluid:
FV +F% =dM (2.24)

The linear momentum of a particle is defined as the product of its mass and its
velocity.
Another assumption will be made now:

Assumption 2: superposition of the linear momentum of particles

N The linear momentum of a fluid in a domain D is the superposition of the linear
momentum of the particles in the considered domain.

The domain D is subdivided into a number N(t) elementary subdomains D, each
consisting of N, particles. In this case, the total linear momentum of the fluid in
domain D at that moment is written as

N(t) 7 N
M(D,t) = Z (Z maw?> (2.25)

e=1 a=1

Using the particle-type classification, this can be written as

N@#t) [ M Nem
MD,t) = S S |msd wey
e=1 B=1 a=1
N@t) / M
= Z( mBne,B(t)ve,B(t)) V. (2.26)
e=1 B=1

where use is made of Equations (2.18) and (2.14). Substituting Equations (2.16),
(2.20) and (2.21) in Equation (2.26) gives
N(t)
M(D,t) =" ¢ (t)V-. (2.27)

e=1

Since summation has to be done over elementary small domains, it can be replaced
by integration:

M(D,t) = / (%, H)dV. (2.28)

x€D(t)
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Newton’s law - Equation (2.24) — can now be written as

/ f(x,t)dV + / t(x,t)dA = d,-,/ o(x, )dV. (2.29)
xeD(t) x€dD(t) x€D(t)

Using Equation (2.13), this can be written as

/ £(x, )dV + / t(x, )dA = / d(x, t)dV. (2.30)
x€D(t) xeD(t)

xEOD(t)

In non-viscous fluids, the traction has only a component perpendicular to the surface
the force acts on. In this case, the traction is given by

t(xa t) = —p(x,t)l/(x, t)a (231)

where p is the acoustic pressure in the point x at time ¢ and v is the unit vector
perpendicular to the boundary element dA.

Assuming that p(x,t) is defined everywhere in the domain D, and that p(x,t) is a
continuous differentiable function of x, Gauss’ integral theorem can be applied to
convert the boundary integral in the left-hand-side of Equation (2.30) into a volume
integral. Equation (2.30) then becomes

/x o (Vp(x,t) + ¢(x,t)) dv = / £(x,t)dV. (2.32)

x€D(t)

Since Equation (2.32) holds for any domain D(t), it follows that

Okp(x,1) + dp(x,t) = fr(x,1). (2.33)

which is the local form of the equation of motion. After a temporal Fourier transform,
this equation can be written in the frequency domain as

O P(x,w) + p(x,w) = F(x,w). (2.34)

Equations (2.33) and (2.34) mean that a spatial variation of the acoustic pressure is
related to a temporal variation of the linear momentum and a volume force acting
on the medium.

2.1.3 The deformation equation

The change in volume of a time-variant domain D(t) is related to the drift velocity
at the boundary of the specified volume through

d V(1) :/ i v (x, g (x, t)dA, (2.35)
JXEC
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Fig. 2.2 Volume change in an elementary domain.

where v is the unit normal vector perpendicular on the boundary 8D. This process
is illustrated in Figure 2.2. Equation (2.35) only makes sense when the drift velocity
v(x,t) is defined in each point at the boundary 9D and v(x,t) is a piecewise contin-
uous function of x. Furthermore, if v(x,t) is continuously differentiable throughout
D, the volume change can be written as

d: V() = /ED( )Bkvk(x, t)dy (2.36)
X t

where Gauss’ integral theorem has been used to convert the boundary integral in
Equation (2.35) into a volume integral.

The presence of a source — i.e. an acoustic transducer — can cause the volume of a
domain to change. The volume source density of volume injection rate q(x, t)[s~!] is
a quantity describing the rate the considered domain is changing due to the presence
of a source. The cubic dilatation rate is not only influenced by a source, but has
also an induced part, due to the state quantities of the acoustic wave motion. This
induced part of the cubic dilatation rate is denoted by 8(x,t)[s~!]. The total cubic
dilatation rate is now written as:

dV(t) = / 8(x, t)dV + / o(x, £)dV. (2.37)
x€D(t) x€D(t)

By combining Equations (2.36) and (2.37), the deformation equation can be written
as

x€D(t)

/xev(t) [6lc’l)lc(X, t) — é(x,t)] dVv = / q(x,t)dV. (2.38)

Since Equation (2.38) holds for any domain D, it follows that

Orvk(x,t) — 0(x,t) = q(x,1), (2.39)
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which is the local form of the deformation equation.

In the frequency domain, this becomes

hVi(x,w) — O(x,w) = Q(x,w). (2.40)

Equations (2.39) and (2.40) mean that the presence of an injection source is com-
pensated for by a spatial variation of the drift velocity and a variation of the induced
part of the cubic dilation.

2.1.4 The constitutive coefficients in a time-invariant medium

Equations (2.33) and (2.39) — or their frequency domain counterparts (2.34) and
(2.40)— give an expression for the wavefield parameters p and v as a function of
source distributions f and q. However, the microscopic material properties are im-
plicitly still present in this equation, due to the expression for the mass flow density
rate ¢, — definition (2.12) and Equation (2.13) — and the cubic dilation rate 6. In
this subsection, these wavefield quantities are related to the wavefield parameters v
and p, by means of the constitutive equations.

From the analysis in subsection 2.1.2 it follows that the change in linear momentum
of a fluid in a domain D can be written as

M

dtM(D,t) = dt/ EmBnB(x,t)vB(x,t)
x€D(t) g

M
= d /X o > pB(x,t)ve(x,1). (2.41)

B=1

A new assumption is made now:

Assumption 3: conservation of number of particles

MW Particles arc neither created nor annihilated. Particles from one type can not,
transform into particles from another type.

This assumption puts new restrictions on the definition of ”particles”. The validity
of this assumption depends on the definition of particles and on the nature of the
considered processes. If one chooses a molecule to be the definition of the particle, it
is clear that Assumption 3 will not be satisfied when the process under consideration
consists of molecular transformations.
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If Assumption 3 is valid, it holds that? for a quantity g (x,t)

dt / nB(X, t)’(/JB (X, t)dv = nB (X, t)thB (X, t)dv) (242)
x€D(t) x€D(t)

where the co-moving time derivative Dy is defined as
D; = 0y + v 0. (2.43)

As a consequence, it follows from Equation (2.41) that
M
dM(D,t) = Z / np(x,t)Dympve(x,t)dV
B—1 /*x€D(¢)

M
Z / ps(x,t)Dsvp(x,t)dV. (2.44)
B=—1 x€D(t)

0

Also, combining Equations (2.13), (2.20), (2.21) and (2.41) gives

dM(D,t) = / ¢(x,t)dV. (2.45)
xeD(t)

Since Equations (2.44) and (2.45) hold for any domain D, it follows that an explicit

expression for the mass flow density rate can now be given by

M

(Z)(X, t) = Z pB(X,t)Dive (X, t). (2.46)

B=1

This expression is still difficult to treat, due to the particle type dependent drift
velocity vp(x,t). In many practical cases, though, the next assumption is very
reasonable:

Assumption 4: common collective motion

B The particles of different types all have the same drift velocity: vg =v

This assumption can be satisfied by mechanical interactions between the different
substances, preventing them from separating from each other.
Using this assumption, Equation (2.46) can be written as

¢(X, t) = p(x,t)Dtv(x, t)a (247)

where use is made of Equation (2.17).

2 A proof of this can be found in De Hoop (1995).
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According to Equation (2.47), the mass flow density rate depends only on the drift
velocity v, and not on the pressure p. Similarly, it is often assumed that the induced
part of the cubic dilation rate only depends on the pressure p and not on the drift
velocity v, and has the form

0(x,t) = —k(x,)Dyp(x,1), (2.48)

where £(x,t)[Pa™'] is the compressibility of the fluid for a given time and position.

In a time invariant medium, the constitutive parameters arc time independent. As
a consequence, Equations (2.47) and (2.48) are written as

¢(x,t) = p(x)Dev(x, t). (2.49)
and

(x,t) = —k(x)Dyp(x, t). (2.50)

In some media, the different particle types do not have the same drift velocity v.
Depending on their material state, the particles of one constituent may undergo a
large displacement with respect to the motion of the particles of another constituent.
This is the case, for example, when a medium consists of a two fluids with a different
acoustic velocity. Assumption (4) is not satisfied then, and Equations (2.47) and
(2.48) no longer hold.

Equations (2.49) and (2.50) assume that the constitutive parameters at time ¢ depend
only on the wavefield parameters at the same time.
A more general form of the constitutive equations is given by

P(x,t) :/ u(x, t)Dyv(x,t — t')dt’ (2.51)
t'eR
and

6(x,t) = —/ Rx(x, t')Dip(x,t — t')dt’. (2.52)
t'e

Note the introduction of the inertia relaxation function pu(x,t)[kgm=>s~!] and the
compliance relaxation function x(x,t)[Pa='s™!].

Since these relaxation functions in the right-hand side of Equations (2.51) and (2.52)
only depend on relative times — the time difference between cause at t — t' and
observation at t, the medium is assumed to be time-invariant.

Causality implies that the values of {¢, 8} at a given time ¢ can not be influenced
by the values of the wavefield at a time later than ¢. Hence, the equations (2.51)
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and (2.52) become

o(x,t) = /00 u(x, t")Dyv(x,t —t')dt’ (2.53)
=0
and
B(x,1) = — /00 x(x, tYDep(x,t — t')dt'. (2.54)
Jy =0

When the medium is instantaneously reacting, it holds that
u(x,t) = p(x)d(t) (2.55)
and

x(x,t) = £(x)d(t), (2.56)
so that Equations (2.53) and (2.54) reduce to Equations (2.49) and (2.50).

2.1.5 Low-velocity approximation

The expressions for the mass flow density rate — Equations (2.49) and (2.53) —
and the induced part of the cubic dilation rate — Equations (2.50) and (2.54) —
are rather difficult to handle due to the presence of the co-moving time derivative
D;. In many applications, though, this co-moving time derivate is simplified.

Intuitively, it can be seen that in the expression
Dp(x,t) = Op(x,t) + viOpp(x, 1) (2.57)

the second term will be much smaller than the first term when the static equilibrium
is disturbed by a relatively fast fluctuation with a relatively small amplitude. In
most ultrasonic and seismic situations, this condition is satisfied. In this case, it is
reasonable to replace equation (2.43) by the approximation

A further analysis of this low-velocity linearisation is given by De Hoop (1995).
2.2 Instantaneously reacting medium
For an instantaneously reacting medium, the expressions for the mass flow density

rate ¢, — Equation (2.49) — and the cubic dilation rate 6 — Equation (2.50) — are
rather simple expressions, especially when using the low-velocity linearisation (2.58).
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Although the basic equations are very general, they will be solved here for the case
of a one-dimensional plane wave. In this section, an expression will be derived for
calculating the plane wavefield at a point in a homogeneous medium, based on the
plane wavefield in another point in the same medium.

2.2.1 General wave equation

Using the low-velocity approximation as expressed in equation (2.58), the constitu-
tive relations for an instantaneously reacting medium — equations (2.49) and (2.50)
— are simplified to

@i (x,t) = p(x)Opvk(x, 1) (2.59)
and

0(x,t) = —k(x)0p(x,t). (2.60)

Using these relations in the equation of motion (2.33) and the deformation equation
(2.39), the basic equations become

Okp(x,t) + p(x)Opvr(x,t) = fr(x,t) (2.61)
and

Opvr (x,t) + k(X)Fp(x,t) = q(x,1). (2.62)

Applying a Fourier-transformation to cquations (2.61) and (2.62) leads to
O P(x,w) + jwp(x) Vi (x,w) = Fr(x,w) (2.63)
and

Vi (x,w) + jwk(x) P{x,w) = Q(x,w). (2.64)

When no sources are present, Equations (2.63) and (2.64) become
Ok P(x,w) + jwp(x)Vi(x,w) =0 (2.65)
and

O Vi (x,w) + jwk(x)P(x,w) = 0. (2.66)

From Equation(2.65) it follows that

Vi (x,w) = _jwp#(x) (OkOk P{x,w) — Ox P(X,w)0Inp(x)) . (2.67)
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Using this in (2.66) leads to

2
OO P(x,w) + (CE"—X)) P(x,w) — 8 P(x,w)Inp(x) = 0 (2.68)
where the acoustic velocity ¢ is defined as
1
(X)) = ———. (2.69)
K(x)p(x)

Homogeneous medium

A fluid is homogeneous if the constitutive parameters are shift-invariant. Since in this
case p(x) = p and k(x) = & — and hence ¢(x) = ¢ = (kp)~1/2 —, Equation (2.68)
transforms into the Helmholtz equation:

B0k P(x,w) + (%)2 P(x,w) = 0. (2.70)

2.2.2 Plane wave theory

In this subsection, the seismic convention will be used where one axis, the z3 or z-
axis, points downward into the material — in seismics, the earth. If the pressure only
varies along the z-axis and if the medium is homogeneous in a considered domain,
the Helmholtz equation (2.70) is written as

2
82P(z,w) + (f) P(z,w) = 0. (2.71)
¢
The general solution of this differential equation is well known and given by
P(z,w) = PT(z,w) + P~ (2,w), (2.72)
with
P*(z,w) = P*(w) exp(Fjwz/c), (2.73)

where P*(w) and P~ (w) are space-independent parameters. These parameters are
determined by boundary-conditions, leading to a particular solution for a given
problem.

In the time domain, the solution is written as

pz,t) =pt(t—z/c) +p (t + z/c). (2.74)
The two terms in Equations (2.72) as well as (2.74) represent two plane waves.

A wavefront is defined to be the combination of points in space-time where the
considered wave function has a constant value. Following the seismic conventions,
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z [m}] z [m]

(a) downgoing wave (b) upgoing wave

Fig. 2.3 Downgoing and upgoing plane waves. The straight line represents a wavefront.

the first term in Equations (2.72) and (2.74) represents a downgoing wave, since its
wavefront — given by

z=ct—u, (2.75)

with © a constant value, "travels” downward into the material. This means that for
increasing time, the wavefront will be located at a larger value of z  deeper into
the target.

For the same reason, P~ (z,w) or its time-representation p~ (¢ + z/¢) is called an
upgoing wave. This principle is clarificd in Figure 2.3.

Consider two points in a homogeneous medium, at different depths z4 and zg, where
zp > z4. The pressure at these points due to the presence of a downgoing wave are
in the frequency domain given by

Pt(z4,w) = PT(w)exp(—jwza/c) (2.76)
and
P*(zp,w) = Pt (w)exp(—jwzg/c). (2.77)

It follows that, when the pressure at a given depth z4 is known, the pressure at a
different depth zp can be expressed as

Pt (zp,w) = Pt (z4,w) exp (-jw@) ) (2.78)
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The propagation factor W is now defined as

W (w, Az) = exp (—jw%) . (2.79)

Using this definition, Equation (2.78) becomes

Pt (zp,w) = P (24,0)W(w, 2B — 24). (2.80)

An analogous derivation for the upgoing wavefield leads to

P~ (zp,w) = P (2B,w)W(w,zp — 24). (2.81)

Specific acoustic impedance

In the following, V'(z,w) is a short notation for V3(x,w), the only non-zero component
of V(x,w) in the considered situation. From Equations (2.72), (2.73) and (2.65), it
follows that

Vizw) = V(z,w) + V™ (z,0), (2.82)
where
VE(z,w) = VF(w) exp(Fiwz/c), (2.83)
with
VW) = 4 PHW), (284)

The specific acoustic impedance for a down- or upgoing plane wave is defined by

P(z,w)

Zt(z,w) = Vi)

(2.85)

Using Equation (2.84), the specific acoustic impedance for a plane wave in an in-
stantaneously reacting medium is given by

Z* = %pe. (2.86)
2.3 Medium with relaxation
In this section, wave propagation in a medium with relaxation is studied. In such a

medium, acoustic energy is irreversibly converted into another form — and therefore
dissipated. The phenomena that cause this behaviour are very complex. For a study
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of relaxation effects and consequences, the reader is referred to the literature —- e.g.
Toksoz and Johnston (1981) and Tolstoy (1992). In this thesis, the approach of
De Hoop (1995) is followed.

Although the wave propagation operator in a medium with relaxation is different
from the wave propagation operator in an instantaneously reacting medium, the
expressions for the upgoing and downgoing wavefield can have the same form as
they have in an instantaneously reacting medium.

2.3.1 General wave equation

Equations (2.53) and (2.54) incorporate causality in a medium with rclaxation, but
are very general.

Therefore, in practical cases, the constitutive equations are expanded with terms
that account for the conversion of acoustic energy into another form. In the case of
an isotropic medium with dissipation of acoustic energy into heat, the constitutive
equations are often written as — using the low-velocity approximation

bk (x,1) = K(X)vp(x, 1) + p(x)0yvi (X, t) (2.87)

and

o(x’ t) = _F(X)p(xv t) - ﬁ:(X)atp(xﬂ t)? (288)

where K is the coefficient of frictional force and T is the coefficient of bulk invis-
cidness. Tt will be shown later in this section that the introduction of these terms
indeed leads to the conversion of acoustic energy into dissipated energy.

In the frequency domain, these counstitutive equations are given by

$(x,w) = (K(x) + jwp(x)) V(x,w) (2.89)

and

O(x,w) = — (T(x) + jwk(x)) P(x,w). (2.90)

Using the constitutive Equations (2.87) and (2.88) in the equation of motion (2.33)
and the deformation equation (2.39), the basic equations become

Op(x,t) + p(X)0pvr(x,t) + K (x)vr(x,t) = fr(x,1) (2.91)
and

Ao (x,1) + K(x)Dp(x, ) + T(OP(x, 1) = qlx,1). (2.92)
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Applying a Fourier-transformation to equations (2.91) and (2.92) leads to
O P(x,w) + jwp(x)Vi(x,w) + K(x)Vi(x,w) = Fi(x,w) (2.93)
and

Ok Vi (x,w) + jwk(x)P(x,w) + T'(x)P(x,w) = Q(x,w). (2.94)

When no sources are present, equations (2.93) and (2.94) become

Bk P(x,w) + jwp(x)Vi (x,0) + K (x)Vi(x,w) = 0 (2.95)
and

O Vi (%, w) + jwk(x)P(x,w) + I'(x) P(x,w) = 0. (2.96)

Defining the generalised density p(x,w) and the generalised compressibility &(x,w)
as

px) = p(9) + =K (x) (297)
and
f(x,w) = K(x) + jiwr(x), (2.98)
Equations (2.95) and (2.96) can be written as
Ok P(x,w) + jwp(x,w)Vi(x,w) =0 (2.99)
and
Oc Vi (x,w) + jwk(x,w)P(x,w) = 0. (2.100)

Homogeneous medium

In the case of a homogeneous medium, the combination of Equations (2.95) and
(2.96) leads to

2
Ok P(x,w) + [ 2 — KT — jw (oT + kK) | P(x,w) = 0, (2.101)
CZ

with the acoustic propagation velocity ¢ defined in Equation (2.69). A solution of
this equation for a lateral invariant medium will be given in subsection 2.3.2. Using
the generalised density p(w) and the generalised compressibility #(w), it follows from
Equations (2.99) and (2.100) that Equation (2.101) can also be written as

WA 2
B8 P(x,w) + (E) P(x,w) =0, (2.102)
with the generalised acoustic velocity defined as
1
6= —=. (2.103)

Vkp
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Energy considerations

At this point, it will be shown that the presence of the coefficient of frictional force
K and the coefficient of bulk inviscidness T' in the constitutive equations lead to the
dissipation of acoustic energy.

Multiplying Equation (2.91) with vg(x,t) and Equation (2.92) with p(x,t), and
adding the results leads to

VU 2
Ok (pug) + O (p k2 LN n%) + Kvgvy, + Tp* = frug + gp. (2.104)

After integration of Equation (2.104) over any time invariant domain D where Equa-
tions (2.91) and (2.92) hold, it follows that

2 . .
/ porvedA + 8 / (p”’“”’“ + np—) av + / OV = Wex, (2.105)
aD D 2 2 D

where Gauss’ theorem has been used to convert the volume integral to the boundary
integral in the first term of Equation (2.105). The volume density of dissipated power
and the total acoustic power delivered by the sources are given by respectively

Q" = Kvpg + Ip? (2.106)
and
west = /D (frvr + gp) dV. (2.107)
Based on Equation (2.105), the following energy equation can be deduced:
P? 48, (WER 4 Wweeh) 4 pd = et (2.108)
with P2 the net acoustic power flow across 0D, and defined as
P? = / pugvpdA. (2.109)
oD

Further, the kinetic energy of the acoustic wavefield in the domain D, and the
deformation energy stored in the acoustic wavefield in this domain are defined by,
respectively

whin = / pPek v (2.110)
D
and

Wdef:/ np—de. (2.111)
p 2
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The term P9 is the acoustic power dissipated in D and is given by
pPd= / Q4dy. (2.112)
xeD

It follows that when both K and T are zero, the dissipated acoustic power vanishes
and the energy delivered by the sources is converted into kinetic and deformation
energy stored in the acoustic wave field in D and into an acoustic power flow through
the boundary of the considered domain.

Since acoustic losses can not lead to an increase of the energy in the domain, both
K and I' must be non-negative.

2.3.2 Plane wave theory

In this subsection, the same conventions as in subsection 2.2.2 will be used. If the
pressure only varies along the z-axis, the wave equation (2.101) is written as
2
02P(z,w) + (LZ—Q— — KT — jw (pI' + nK)) P(z,w) = 0. (2.113)

The general solution for this differential equation is given by

P(z,w) = P*(z2,w) + P~ (z,w), (2.114)
with

Pt(z,w) = Pt (w)exp(y22) (2.115)

P (z,w) = P (w)exp(mz2), (2.116)

where 7v; and -y, are the roots of
—v? = wlpk — KT — jw (pT' + kK) . (2.117)

Using the generalised acoustic velocity é as defined in Equation (2.103), the down-
and upgoing waves in Equation (2.114) can be written as

PE(z,w) = PY(w) exp(Fjwz/8). (2.118)

In Equation (2.117), v has a real and an imaginary part, and can be written as
Y(w) =y (w) + Jriw), (2.119)
where both v, and -; are real values. From Equation (2.117), it follows that

2y = w (pI' + kK) . (2.120)
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Since the right-hand side of this equation is always non-negative for w > 0, it follows
that -y, and -; have equal sign.

In this thesis, 71 will be chosen to be the root with positive real and imaginary parts,
and will be denoted as v. As a consequence, 2 will be denoted as —.

After some algebra, an explicit expression for 7, and v; is obtained:

Ve = B <KP —w’pk + {(Kr)2 +u? [(Fp)2 + (Kfe)z] +wt (/m)z}1 2)] 1/(22-121)
1/2

=[5 (Car+ont (KD 4 [0 + (7] + ot o007} )| 2122

For high frequencies ~ when the terms in w are dominant — Equations (2.121) and
(2.122) can be approximated by

Ve~ ‘/pﬁf/%l{/p (2.123)
and
Vi = wy/pK. (2.124)

Consider two points in a homogeneous medium, at different depths z4 and zg. The
pressure at these points due to the presence of a downgoing wave are given by

Pt (z4,w) = PM(w) exp(—7y2za) (2.125)
and
Pt (zp,w) = PT(w) exp(—7y2B). (2.126)

It follows that, when the pressure at a given depth z4 is known, the pressure at a
different depth zg can be expressed as

Pt (zp,w) = PT(za,w)exp (=7 (2B — 24)) - (2.127)

The definition of the propagation factor W - as given by Equation (2.79) — is now
generalised to

W(w,Az) = exp (—vAz). (2.128)

Using this definition, Equation (2.127) becomes

Pt (zp,w) = PT(z4,w)W(w, 25 — 24). (2.129)
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An analogous derivation for the upgoing wavefield leads to

P (za,w) = P~ (zg,w)W(w, 25 — z4). (2.130)

Using the separation of Equation (2.119), the propagation factor becomes
W(w, Az) = exp(—y»Az) exp(—jv:Az). (2.131)

The first factor in the right-hand side of Equation (2.131) is responsible for the
attenuation effect during the propagation and is therefore called the attenuation
factor — . is called the attenuation coefficient. The second factor determines the
phase-behaviour and is called the phase factor.

In the case of an instantancously reacting medium — which means that both K
and I' are zero — it follows from Equations (2.121) and (2.122) that « has only an
imaginary part, and Equation (2.131) reduces to Equation (2.79).

Specific acoustic impedance

Combining Equations (2.99), (2.114) and (2.118) gives an expression for the vertical
velocity component in a plane wave in a medium with relaxation:

V(z,w) = V(w)exp(—jwz/&) + V~(w) exp(jwz/é), (2.132)
with
VE(z,w) = i%l_’i(w). (2.133)

Using the definition of Equation (2.85), it follows that the specific acoustic impedance
for a plane wave in a medium with relaxation is given by

ZE = +pe. (2.134)

Using the definitions in Equations (2.97), (2.98) and (2.103), it follows that

(2.135)

For non-vanishing values of I and K, the specific acoustic impedance now has a real
and an imaginary part. Theoretical and practical studies concerning the complex
specific acoustic impedance can be found in the literature — e.g. Legouis and Nicolas
(1987), Paul (1957).

It can be observed that for high frequencies, i.e. w — o0, the influence of frictional
forces and bulk inviscidness on the specific acoustic impedance is less pronounced,
and ultimately Equation (2.135) reduces to Equation (2.86).
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2.4 Boundary conditions

In the case the constitutive parameters are non-continuous functions of the spatial
parameter x, the wave equations derived in subsections 2.2.2 and 2.3.2 do not longer
hold throughout space. At the points where the constitutive parameters do not show
a continuous behaviour, boundary conditions have to be introduced.

T R
Pi—l Pi—l

2

PT

(2

Fig. 2.4 Boundary conditions at the interface z; between layer i—1 with a specific acoustic
tmpedance of Zii_1 and layer i with an acoustic impedance of Zii.

In Figure 2.4, the case of a vertically travelling downgoing plane wave encountering
an interface — an acoustic impedance contrast — is illustrated. The frequency
representation of this wave is denoted by PiI_ i

Part of the energy of the downgoing wave will be reflected, giving rise to a new
upgoing wave P!, another part P will be transmitted downwards.

The reflection and transmission coeflicients at the boundary between layer s — 1 and
i are given by

PR,
i1 = 2.136
Ri— Pi1—1 ( )
and
pTr
Ty = ——. (2.137)
P,

Since the pressure has to be continuous at the interface z;, it must hold that
PL+PF =P, (2.138)

leading to the relationship

Ti,1 = 1 + R‘ifl. (2139)
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Also the particle velocity has to be continuous at the interface z;:
Vi +vE =V (2.140)

Using the definitions of the specific acoustic impedance — Equation (2.85) — it
follows from Equation (2.140) that

P!l PE PT
e (2.141)
zr 7., Z,

2 2

For simplification, Z+ will be denoted as Z. It then holds for an instaneously reacting
medium — Equation (2.86) — and a medium with relaxation — Equation (2.135)
— that 7= = —-Z.

Combining Equations (2.136), (2.137), (2.139) and (2.141) gives an expression for
the reflection coefficient R;_; at the interface z;:

_Zi— 75

Ri1=—7+—.
-1 Zi+Ziq

(2.142)

For an instantaneously reacting medium, the acoustic impedance is real valued
see Equation (2.86). As a consequence, also the reflection coefficient is real valued.
For a medium with relaxation, however, the acoustic impedance is a complex and
frequency-dependent function — see Equation (2.135). It follows that in this case,
the reflection coefficient is complex and frequency-dependent too. This complex and
frequency-dependent behaviour is less pronounced for high frequencies or low values
of K and I, as can be observed from Equation (2.135).

2.5 Forward model in a layered configuration

In Sections 2.2 and 2.3, the acoustic wavefield is described for a medium where the
constitutive parameters vary as a continuous function of space and time.

In Section 2.4, boundary conditions are given for the wavefield at positions where
one or more constitutive parameters show a discontinuity.

A combination of the equations obtained in these previous sections allows to describe
the acoustic wavefield in any configuration. In this section, the wavefield in a medium
where a laminated material is located, will be studied. The laminated material —
also called the target — consists of n parallel layers and is located between two
half-spaces.

Inside the layers, the constitutive parameters are assumed to be constant. This
allows the use of Equations (2.79) and (2.80) in the case of an instantaneously
reacting medium, and Equations (2.129) and (2.131) in the case of a medium with
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relaxation. In both cases, if the down- or upgoing wavefield at one position is known,
the wavefield at another position is given by

Pt (zp,w) = P (24,0)W(w, 25 — 24), (2.143)
P~ (z4,w) = P (2B, w)W(w, 2B — 24). (2.144)

The difference between an instantaneously reacting medium and a medium with
relaxation is expressed in the propagation factor W(w, Az). Apart from the two
expressions for the propagation factor that are given in this thesis, also other ex-
pressions can be used® — as long as they describe the wave propagation in a domain
where the wavefield quantities vary continuously.

At the interface between the different layers, these cquations can not be used, and
the reflection and transmission coefficients introduced in the previous section have
to be used.

The reflection coefficient between two instantaneously reacting media is calculated
in a different way than in the case one or both layers at the interface show relaxation
phenomena. The expression for the reflection cocfficient — Equation (2.142) — holds
for both cases, however. The difference between instantaneously reacting media
and media with relaxation is expressed in the definition of their specific acoustic
impedance — Equation (2.135) and (2.86).

In addition to the geometrical configuration and the acoustic propertics of the dif-
ferent layers, the location and characteristics of possible sources need to be known,
in order to calculate the wavefield.

In the configuration shown in Figure 2.5, a source is located in the upper half-
space, at depth zp. This source emits a plane wave propagating perpendicular to
the interfaces orientation and then the above-mentioned equations can be used.

The goal of this section is to derive a representation for the wavefield at the same
position as the location of the source. The measured wavefield will be dependent on
the used source and on the acoustic parameters of the material the waves interact
with.

When a wave is sent downward into a material, a resulting upgoing wavefield will
occur at the transducer, which is also located in the upper half-space. Since this
wavefield exists due to scattering of cnergy in the material, this resulting wavefield
is also called the scattered wavefield. The total wavefield at the transducer thus con-
sists of a source wavcfield emitted by the transducer — also called the downgoing
wavefleld since the energy travels downwards from the transducer into the investi-
gated medium — and a scattered wavefield - - also called the upgoing wavefield since

3For example, a better understanding of friction can lead to another formulation of Equa-
tion (2.87), resulting in another expression for W (w, Az).
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Fig. 2.5 Configuration and naming conventions for a laminated target. The different
layers are characterised by their thickness Az, generalised density p and gen-
eralised acoustic velocity ¢. Note that in the case the medium in the layer is
instantaneously reacting, p and é reduce to respectively p and c.

the energy travels upwards from the medium towards the transducer.

A recursive procedure will be applied in order to obtain the scattered wavefield at
the transducer. Such a recursive formulation for the one dimensional model has been
given by a.o. Kennett (1974). A recursion algorithm consists of two parts:

e an initiation step; N

¢ a number of recursion steps.
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2.5.1 |Initiation step

In the first step, only the bottom layer n of the target is considered, and this layer
is assumed to be unbounded at the top — as a consequence, it is a half-space. A
— virtual — source is positioned at z,, and the scattered wavcfield at the same
position is calculated.

The configuration is shown in Figure 2.6.

upper half-space

Pnt+1 Cn+i i

lower half-space

Fig. 2.6 Configuration in the initiation step for the recursion algorithm. The interface-
free transfer function at z, will be calculated.

According to Equation (2.143), the downgoing wavefield just above interface 2,41 is
in the frequency domain given by

P+(2n+1,w) = W(w,Azn)PJr(zn,w), (2.145)

where P*(z,,w) is the frequency-representation of the downgoing wavefield emitted
by the virtual source at z,.

As explained in Section 2.4, part of the energy in the downgoing wavefield will be
transmitted in the lower half-space — as a consequence, this part will never appear
at the transducer —, while another part will be reflected back into layer n. The
reflected energy gives rise to an upgoing wavefield P~ (z,,1,w), which is given by

P (zpy1,w) = R,2W (w, Az,) P (2, w). (2.146)

This upgoing wavefield propagates through layer n. Using Equation (2.144) leads to
the upgoing wavefield at the interface z,:

P~ (zp,w) = W(w, Azp) RaW (w, Azp) PF (2, w). (2.147)

The transfer function of a system is defined as the response of the system when a
single pulse in the time-domain is used as the source function. This source function
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is in the frequency domain denoted by Sx(w) and is defined as
Sx(w) =1. (2.148)

In this case, the frequency content of the downgoing wavefield at the interface z,, is
given by

Pt (zp,w) = Sx(w) = 1. (2.149)
The transfer function of the considered configuration is then given by

X%(w) = W(w, Azp) Ry W (w, Azy). (2.150)

The superscript © is used to indicate that no interface is assumed on top of the
material — thus preventing that upgoing energy will be reflected back into the con-
figuration. Therefore, X% will also be called the interface-free transfer function at zy,.

2.5.2 Recursion steps

The goal of one recursion step is to obtain the interface-free transfer function X?_,
provided that X? is known. Each recursion steps consist of two parts: in the first
part, an interface is put in the top-most layer at depth 2; and the material parameters
of layer 7 — 1 are assigned to the new top half-space. In the second part, the interface-
free transfer function is calculated at z;_;. Ultimately, the interface-free transfer
function at zg is obtained.

After n—i recursive steps, the configuration looks like Figure 2.7(a). The upper half-
space has the material properties of layer 7, and the interface-free transfer function
X? is known.

addition of interface i

In this step, it is assumed that layer ¢ is bounded at the top side and the half-space
on top on it has the properties of layer i — 1.

In this case, a part —R;_; of the upgoing wavefield P~ (z;,w) just below z; will
be reflected back, due to the impedance contrast between layer ¢ and layer ¢ — 1.
The resulting downgoing wavefield is thus Pt — R;_ P; . It follows that the total
upgoing wavefield at z; is implicitly written as

P =X) (Pt — R P). (2.151)
The total transfer function X; at depth z; is implicitly defined as

Py = X,P;. (2.152)
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fore the addition of interface ¢ towards z;_1

Fig. 2.7 Configuration after n—i recursion steps, before and after the addition of interface

z; and extrapolation towards z;—,.

It follows from Equation (2.151) that
X;i=X2(1-R;_1X)), (2.153)
from which an explicit form of the transfer function can be obtained:

X0
Xi=——t—. 2.154
"1+ R XY (2.154)

A scheme of this is shown in Figure 2.8.

@‘ _Ri~l > Xz

Fig. 2.8 Stream diagram for the calculation of the transfer function X;.
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extrapolation towards z;,_;

In the second step, the virtual source is moved from z; — just below interface i —
towards z;_;. The total transfer function for the case where source and receiver are
located at z; is obtained in the previous step and given by X;. The wavefield at z;_1
for this configuration consists of two contributions: a directly reflected contribution,
and a transmitted contribution through interface <.

According to Equation (2.143), the downgoing wavefield at z; is given by
Pt (zi,w) = W(w, Azi)PT (2i-1,w). (2.155)

Due to the impedance contrast between layer ¢ — 1 and layer 4, a part R;_; of the en-
ergy in the downgoing wavefield P* (2;,w) will be reflected. This part will give a con-
tribution W(w, Az;_1)Ri_1W (w, Az;_1)PT(2;,_1,w) at z;_;. Another part of this
downgoing wavefield, given by (1+R;_1)W (w, Az;_1)P*(2;_1,w) is transmitted into
layer i, where it acts as a source for the configuration in the previous step. As a conse-
quence, the upgoing wavefield at z; is given by X;(1+R;—1)W(w, Az;_1)PT (zi—1,w).
A part 1 — R;_; of this wavefield is transmitted into layer ¢ and will propagate to
Zi—1.

The total upgoing wavefield at z;_; can thus be written as

P (zi-1,w) = Wiy (Rici + (1= RY,) Xi) Wi PT (251, w), (2.156)

where W;_; is a short notation for W(w, Az;_y).

This procedure is shown in Figure 2.9. It follows that the interface free transfer

0
1= Wi R Wiy Xiz1

1+ R;—1 - Ry

X;

Fig. 2.9 Schematic calculation of the extrapolation step in the recursion algorithm.

function at z;_; can be written as

XY =Wt (Rioa + (1- RE,) Xi) Wi (2.157)
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overview of the recursion steps

The iterative algorithm that calculates the total response of a horizontal layered
medium can thus be initiated by

X! = W,R,W,. (2.158)
The iteration steps are defined by
X0
X, = ——t .
1+ R X} (2.159)
X2, = Wia (Ria+(1-RI,) X)) Wisy. (2.160)

The derived equations calculate the impulse response for a given configuration.
When the source is not a delta-pulse, but an actual wavelet with a time-representation
s(t) and a frequency content S(w), the scattered pressurc is the time-convolution of
the response function with the source signal. In practice only the scattered pressure
is recorded. Therefore P; will be used in the remainder of this thesis to indicate
the scattered pressure P;”. Also P? will be used to indicate interface-frce scattered
pressure at depth z;.

In the frequency domain, the scattered pressure is given by
P} = X7s, (2.161)
P = XS (2.162)
By combining Equations (2.158), (2.159), (2.160), (2.162) and (2.162), an iterative

procedure for calculating the scattered pressure at a transducer located at the top
of the material can be obtained. The algorithm is initiated by

P? = W, R,W,5. (2.163)
The iteration steps are given by
PPS
P = Il S 2.164
s SR (2.164)
Pf,l = W,_1 (Ri_lS + (1 — Rg—l) Pz) Wi_1. (2.165)

P? is often called the interface-multiple free pressure at the top of layer 4, since this
pressure is obtained assuming that layer ¢ has no surface it is unbounded at its
top. As a consequence, there are no multiples* related to the top of this layer in the
expression. Note however that multiples due to reflections in layers ¢ + 1 till n are
present in the expression.

4Following the seismic terminology, the term "multiples” refers to waves that propagate in the
target (downward and upward) and have bounced at least twice before detection. A description
and classification of multiples can be found in Verschuur (1991).
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2.6 Simulations

The theory developed in the previous sections can be used to predict the acoustic
transfer function of a laminated material — by means of Equations (2.158), (2.159)
and (2.160). For a given source distribution S(w), Equations (2.163), (2.164) and
(2.165) can be used to predict the resulting pressure.

One reason for performing simulations, is to check the validity of the developed
theory. A good match between simulated results and measurements is an indication
for the quality of the theory — although even an incorrect theory can give correct
results.

In Chapter 3, the results of real measurements will be shown. In order to compare
these measurements with the theoretical predictions, it is important that the source
signal used in the measurements is also used in the simulations.

The source signal will be studied in Section 3.4. For convenience, the most frequently
used source signal is already shown in Figure 2.10°. This source signal will be used
in the following simulations.

1.0 5
4 -
0.5
O 3
° o
= £ 3
a 8.
g 04 g
3 ]
2 -
—0.5 4
1 -
—1.0 T T T 0 T T
0 0.2 0.4 0.6 0 10 20 30
time [us] frequency [MHz]
(a) time signal (b) frequency spectrum

Fig. 2.10 Source signal obtained with a transducer with a centre frequency at 15 MHz,
focussed at 76.2mm. The signal is obtained after a reflection on a glass beam
located in the focus zone.

51t should be noted here that in the following simulations, the source signal is scaled so that its
maximum value is 1.
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2.6.1 Aluminium layer

In this subsection, the target material is a homogeneous aluminium disk. The lateral
dimensions are large compared with the thickness. The material is assumed to be
instantaneously reacting. As a consequence Equation (2.79) can be used to calculate
the propagation factor W.

The material properties of the constituting layers are given in Table 2.1. The thick-
ness of the water layer is chosen to be 76 mm, since in this case the target is located
in the focus zone of the used transducer®.

Aluminium disk in water

Layer | material | Az (mm) | p (rl:l—%) ¢ (2)
0 water 76 1000 1480
1 aluminium 5 2740 6300
2 water 00 1000 1480

Table 2.1 Material properties for an aluminium disk embedded in water.

Using the conventions illustrated in Figure 2.5, the configuration and the definitions
of the parameters are shown in Figure 2.11.

=04 —— - - - -
po = 1000kg m—3 co = 1480m/s Azy = 76 mm
21 + ——
o = 6300m/s.
L | B e
p2 = 1000kg m—3 ¢2 = 1480m/s
z

Fig. 2.11 Configuration for a reflection measurement on an aluminium layer embedded
n water.

Based on these parameters, the reflection coefficients Ry and R; and the travel times

%he term focus zone is explained in the next chapter, and it will be shown that the best results
are obtained when the target is placed in the focus zone of the used transducer.
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to and t; — needed for the calculation of the propagation factor - - can be calculated.
Using the theory described in the previous sections, the scattered pressure Py(w) —
in the frequency domain — and its time counterpart po(t) is calculated. The result
is shown in Figure 2.12. Since the distance between the transducer and the material
is large compared with the thickness of the target, only a small part of the response
time-signal is of interest.

1.0

0.5

amplitude
o
L

-1.0 T T T
0 1 2 3

time [ps]

Fig. 2.12 Simulated reflection measurement on an aluminium layer embedded in water.
The geometrical configuration is shown in Figure 2.11 and the material param-
eters are given in Table 2.1.

Although they are not completely separated from each other, the different arrivals
due to primary reflections — at the top and the bottom of the aluminium disk —
and multiple reflections can easily be distinguished in Figure 2.12.

In Figure 2.13, the influence of the layer thickness on the resulting scattered wavefield
is shown. It is clear that the thinner the layer, the more difficult it becomes to
separate the different arrivals from each other without using any processing tools.

2.6.2 Prepreg

The high impedance contrast between water and aluminium has some consequences
for the amplitude of the different arrivals:
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Fig. 2.138 Simulated reflection response of an aluminium layer with a variable thickness.
Note the influence of the thickness of the aluminium layer on the ability to
distinguish the different arrivals.

1. the first arrival — due to a reflection at the top of the layer — has a high
amplitude;

2. as a consequence of the low transmission from water into aluminium, the second
arrival — due to a reflection at the bottom of the layer — has a low amplitude;

3. the multiples have relatively high amplitudes, and the amplitude decreases
slowly with the order of the multiple due to the two strong reflections on
either interface of the aluminium layer.

The above mentioned effects will be less pronounced for the reflection measurement
on a prepreg layer due to the lower impedance contrast between water and prepreg.
Furthermore, it is expected that acoustic losses in the epoxy-fibre prepreg layers
occur due to frictional forces and bulk viscosity. As a consequence, the theory of
Section 2.3 has to be used, and two extra parameters — the coeflicient of frictional
force K and the coefficient of bulk inviscidness I' — have to be taken into account.
These coefficients will influence both the propagation and the reflection of the acous-
tic waves.

propagation effects

By comparing the propagation factor for an instantaneously reacting fluid — Equa-
tion (2.79) -— with the propagation factor for a medium with relaxation —- Equa-
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tion (2.128) —, it follows that the extra factor for dealing with the attenuation
effects is in the high-frequency approach given by exp(—v,Az). It follows from
Equation (2.123) that this factor is dependent on both K and T'.

At this point, the influence of the attenuation coefficient «, will be examined. The
values of I' and K will be chosen such that they give an equal contribution in ~,:

VPE r YTr
=g (2.166)
and
VPEK v
5 5 2 (2.167)

The acoustic response of a prepreg layer with a thickness of 0.25 mm will be calcu-
lated. Three diffcrent attenuation coefficients will be used, and the results will be
compared with measurements in the next chapter. The geometrical configuration is
shown in Figure 2.14 and the material parameters are given in Table 2.2.

=01 —— - - - - - - - - - = *¢ - — - ==
po = 1000kg m—3 ¢ = 1480m/s Azp = 76 mm

z2

p2 = 1000kg m™3 ¢ = 1480m/s

Fig. 2.14 Configuration for a reflection measurement on a prepreg layer embedded in
water.

The acoustic responses on the source signal shown in Figure 2.10 for the different
configurations are shown in Figure 2.15.

As expected, a stronger attenuation coefficient results in a decrease of acoustic en-
ergy’ — and thus a decrease of the measured signal amplitude. The more often a

Tt was shown in subsection 2.3.1 that part of the acoustic energy is dissipated.
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Prepreg layer in water

Layer | material | Az (mm) | p (%%) c (%) e (1/m)

0 water 76 1000 1480 0

1 prepreg .25 1600 | 3100 | { 0, 1000,2000}

2 water 00 1000 1480 0

Table 2.2 Material properties for a prepreg layer embedded in water.
amplitude amplitude amplitude

~0.6 -0.3 0 0.3 0.6 —0.6 -0.3 0 0.3 0.6 —0.6 —0.3 0 0.3 0.6
e Pk 0 =

time [us]

v -
I
time [us)

g i
time [ps]

sl rd

(a) y» =0m~! (b) y» = 1000 m~! (¢) y» = 2000 m~1?

Fig. 2.15 Simulated acoustic response for a prepreg layer with different attenuation coef-
ficients. It can be observed that the higher the attenuation coefficient, the less
acoustic energy is present in the signal.

wave travels through a layer with a high attenuation coefficient, the more the result-
ing arrival will be attenuated.

reflection effects

The reflection coefficients are, by mecans of Equation (2.142), dependent on the
acoustic impedances of the layers.
impedance is given by Equation (2.135). It has been shown in Section 2.4 that
for high frequencies, the influence of both K and I on the reflection coefficient is
minimal. This will be illustrated here with a numerical example.

For a medium with relaxation, the acoustic
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At this point, v, in layer 1 will be held constant at 1000 m~!. By varying " and K,
the reflection coefficient will change, but the propagation factor remains unchanged.
When the attenuation is completely due to frictional forces, it holds that

VprT
= - 21
Yr 2 ( 68)
K = 0. (2.169)
In the case the attenuation is completely due to viscosity, it holds that
vpE K
= —— 21
Yr 2 ( 70)
r = 0. (2.171)

Three different configurations will be examined now: the extreme cases where the
attenuation is completely due to one of the two phenomena, and an intermediate
case. The configurations are given in Table 2.3. The acoustic responses on the

Prepreg layer in water
Layer | material I’ (ms/kg) K(kg m—°s71)
0 water 0 0
1 prepreg | { 0,2.02 10-%,4.03 107*} | {9,92 10°,4.96 10°,0 }
2 water 0 0

Table 2.3 Material properties for a prepreg layer embedded in water for p and ¢ given in
Table 2.2. The attenuation coefficient v is kept constant

source signal shown in Figure 2.10 for the different prepreg-configurations is shown
in Figure 2.16.

The three configurations give very similar acoustic responses, which is in agreement
with the analysis of Equation (2.142). Therefore, it is reasonable to neglect the
extra effects due to attenuation in reflection in the considered situations®. This is
illustrated in Figure 2.17, where a simulation incorporating the attenuation effects
in reflection is compared with a simulation where these effects are neglected. As a
consequence, the effect of attenuation due to frictional forces or bulk inviscidness,
whether it is due to one or both of these phenomena, can be described by one
parameter, the attenuation coefficient 7.

The attenuation coefficient -,, which is used here using the high-frequency approxi-
mation of Equation {2.121) is only dependent on the material properties K, I', p and
k — and not on the used frequency. As a consequence, v, is a material parameter
too, and once the value of 4, for a particular material is known, it can be used in
any simulation for a configuration where the considered material is part of.

8Neglecting these effects means that the specific acoustic impedance of the considered layer is
calculated using Equation (2.86) instead of using Equation (2.135).
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Fig. 2.16 Simulated acoustic response for a prepreg layer. The attenuation coefficient is
1000 m™! for the three cases. The values of ' and K are given in Table 2.5.
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agation and reflection

(b) attenuation is included only in

propagation effects

Fig. 2.17 Simulated acoustic response for a prepreg layer with T' = 2.02 107* m s kg™*

and K = 4.96 10° kg m™® 571, leading to v = 1000 m~'.

A comparison of

the two figures shows that the extra effects due to attenuation in reflection can

be neglected.
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2.6.3 Glare

Until now, the target material exists of only one layer. Laminated materials consist
of more constituting layers, however. In this subsection, the target material is a
glare laminate. The glare naming convention is explained in Appendix A.

Glare 2/1

As a first case, a glare 2/1 laminate is considered. The model is shown in Figure 2.18.

z1

z2

Z3

24

ps = 1000kg m—2 ¢4 = 1480m/s

Fig. 2.18 Configuration for a reflection measurement on a glare 2/1 material embedded
n water.

Two different configurations {a, b} will be simulated: a first one with aluminium lay-
ers with a thickness of 0.3 mm and a second one with the thickness of the aluminium
layers equal to 0.4 mm. The properties of the configuration are given in Table 2.4.

The aluminium layers are assumed to be instantaneously reacting. As a consequence,
no attenuation factor is needed and Equation (2.79) can be used for the calculation
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Glare 2/1 {a, b} target in water

Layer | material | Az (mm) | p (I—l;% c (%) | v (1/m)

0 water 76 1000 1480 0

1 aluminium | {0.3,0.4} 2740 6300 0

2 prepreg 0.250 1600 3100 1000

3 aluminium | {0.3,0.4} 2740 6300 0

4 water 00 1000 1480 0

Table 2.4 Material properties for a Glare 2/1 material embedded in water.

of the propagation factor in these layers.
As stated in the previous subsection, it is assumed that acoustic losses may occur
in the prepreg layer. As a consequence, Equation (2.128) has to be used for the
calculation of the propagation factor in the prepreg layer.

The acoustic response of these configurations on the source signal shown in Fig-

ure 2.10 is given in Figure 2.19.
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(a) Configuration a, the thickness of
the aluminium layer is 0.3 mm
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0 i L 1
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(b) Configuration b, the thickness of
the aluminium layer is 0.4 mm

Fig. 2.19 Acoustic response for two glare 2/1 configurations.

It can be seen that even for this relatively simple configuration — with only three
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constituting layers — the acoustic response can look rather complex. Since primary
reflections interfere with multiple reflections, it is impossible to reveal the positions
of the primary reflections without doing some processing.

Glare 3/2

In this example, it will be shown how the response of a more complex configuration
is built up using the recursive algorithm. A Glare 3/2 material is considered and the
acoustic parameters of this configuration are given in Table 2.5 The same source-

Glare 3/2 target in water

Layer | material | Az (mm) | p (%%-) c(2) | v (1/m)
0 water 76 1000 1480 0

1 aluminium 0.3 2740 6300 0

2 prepreg 0.250 1600 3100 1000

3 aluminium 0.3 2740 6300 0

4 prepreg 0.250 1600 3100 1000

) aluminium 0.3 2740 6300 0

6 water 00 1000 1480 0

Table 2.5 Material properties for a Glare 3/2 material embedded in water.

signal as in the previous subsection is used to calculate the response. Figure 2.20
shows how the recursive equations are used to build the total scattered wavefield by
recursively adding one layer, starting from the bottom layer. In Figure 2.20(a), the
interface free wavefield of a virtual configuration, consisting only of layers 5 and 6 is
shown. In each of the next figures, one layer is added to the virtual configuration,
and the interface free wavefield is calculated. Ultimately, Figure 2.20(f) shows the
acoustic response of the complete configuration — the Glare 3/2 material.




to a Glare 3/2 configuration. In Figure (a), only the bottom most layer is taken
wmto account. In the nest figures, one layer is added each time.
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Glare 3/2 with void inclusions

In this last example, the influence of void inclusions on the scattered pressure is ex-
amined. A Glare 3/2 disk is scanned at 100 positions on one line, the space between
the scan positions amounts 0.5mm. Although this is a two-dimensional configura-
tion, the results are obtained by performing 100 one-dimensional simulations. The
configuration is given in Figure 2.21.

0 10 20 30 40 50

I | | l | } |
1

T T I i I
horizontal distance (mm)

Z0=O

po = 1000kg m~%p = 1480m/s Az = 50 mm

21 +

29 +

23 T

Z4 T+

Zs5 T

6300m /s

zg +

pe = 1000kg m~3 ¢g = 1480m/s

Fig. 2.21 Configuration for reflection measurements on a glare 3/2 material embedded
in water. Void inclusions are indicated with dark spots.

In this figure, two void inclusions® are indicated with a dark spot. The results of

9Throughout this thesis, the term void inclusion refers to a volume with a small thickness, that
is either vacuum or filled with air.
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three scans are compared with each other in Figure 2.22:

o the first onc is taken at a horizontal distance of 3 mm — in the intact region,

e the second one is taken at a horizontal offset of 7 mm — at the location of the
first void inclusion, which is situated between layer 1 and layer 2,

o the third one is taken at a horizontal offset of 35 mm — at the location of the
second void inclusion, which is situated between layer 4 and layer 5.

amplitude amplitude

amplitude
go 08 0 05 10 40 05 0 05 10 10 05 0 05 10
h ‘ ; (RN S Oy 2
?: % ——_—_—_— ?
| = = 5
| 1 i 1 = 1 =
= = & F = =
2 El S E 2 =
o 2 kS o 2 3 w2 =
g 7 £ g £
3 3 =l e %
3 g} 3 34 H
4 ! :
. f 4 4 %
5 5 _ 51— - = 1
(a) Measurement at (b) Measurement at (¢) Measurement at
a horizontal offset of a horizontal offset of a horizontal offset of
3mm 7mm 35mm

Fig. 2.22 Simulated acoustic response for a Glare 3/2 layer, comparison betwcen posi-

tions with and without delaminations. It can be seen that the presence and

position of delaminations influence the acoustic response of the material.

It can be clearly scen that the presence and the position of possible void inclusions
alters the scattered pressure. The results of the 100 successive scans are shown in
one plot in Figure 2.23. In this grey level plot, the scattered pressurc is shown as

a function of time and horizontal distance. Positive values are shown in dark, low
(i.e. negative) values have light colours.

In Chapter 4 and Chaptcr 5, two inversion techniques will be explained for retrieving
information about void inclusions from the scattered waveficld.
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horizontal offset [mm)]
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Fig. 2.23 Grey level plot of 100 successive measurements on o Glare 8/2 disk. The
distance between two scan points is 0.5 mm, and the configuration is shown in
Figure 2.21.




Chapter 3

Measurements

In order to check the validity of a theory, it is useful that the results predicted by
the theory are confirmed by actual measurements. Although the assumptions in the
previous chapter are rather fair, they are not completely satisfied in all practical
cases.

Also, computers that are used for digital data processing are not designed to work
with acoustic pressures or velocities. Therefore, the acoustic wavefield has to be
converted into a series of digital numbers — the numerical wavefield representa-
tion. This conversion might introduce even more errors to the resulting wavefield
representation in the computer.

In this chapter, the generation of an actually recorded wavefield and the conversion
of this wavefield — the acoustic pressure or velocity — to the numerical wavefield
representation — a series of numbers  will be discussed. Next, the numerical results
of actual measurements will be shown and compared with the results predicted by
the theory described in the previous chapter.

3.1 Conversion of the acoustic pressures

The acoustic wavefield evaluated at a point can be described by the particle velocity
as well as the acoustic pressure in the considered point. In the simulations in Chap-
ter 2, the acoustic pressure of the wavefield is calculated. Thercfore, it is reasonable
to restrict the analysis here to acoustic pressures.

The acoustic transducers used in the following experiments convert an electric signal
into an acoustic wavefield and vice versa. Since a source wavefield is needed in order
to measure the response of the target on an acoustic excitation, an electric signal has
to be supplied to the transducer. The source wavefield will interact with the target
as described in the previous chapter. The resulting wavefield at the transducer is
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then converted into an electric signal, and this signal will be converted into a series
of numbers. A schematic overview of these conversions is given in Figure 3.1(a).

Pulser digital computer

St P~

(a) Practical setup for performing measurements

g+ p-
Pulser —’( Dt Xo D~ Y

(b) Transfer function from an electric pulser to a digital computer

Fig. 3.1 Signal flow of the complete measurement process. The conversions are illus-
trated. The symbols used in this figures are explained throughout the text.

The transfer function Xy as given in the forward algorithm of the previous chapter
— see Equation (2.152) — only describes the transfer from the downgoing pressure
St generated by the acoustic source towards the upgoing scattered acoustic pressure
P~. This transfer function can now be extended as in Figure 3.1(b). In this figure,
D7 is the operator that converts the electric pulse into a downgoing acoustic source
wavefield, while D~ is the operator that converts the upgoing acoustic pressure into
a digital representation Y in the computer.

The transducer that generates the wavefield may or may not be the same transducer
that mecasures the wavefield. For the measurements described in this chapter, the
same transducer is used for generating and registering the wavefield. In the next sub-
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sections, the transducer that generates the wavefield is called the source transducer,
while the transducer that measures the resulting wavefield is called the receiver
transducer. The reader has to keep in mind, though, that for the measurements
discussed in the following sections, these terms refer to the same transducer.

3.1.1 Conversion to acoustic energy

A pulser generates a high-voltage electric signal and sends it to the transducer, wherc
the resulting mechanical vibrations act as an acoustic source. Transducers as well
as pulsers have specific characteristics, and it is important that the electric signal
sent by the pulser is appropriate for the transducer that receives it.

The characteristics of a pulser arc often given by the maximum amplitude of the
emitted signal, and by the rise-time the time it takes to reach the maximum
amplitude.

The acoustic source wavefield that is generated by the transducer is dependent on the
transducer characteristics and on the input signal, delivered by the pulser. Trans-
ducers are often characterised by the time- and frequency behaviour of the wavefield
they generate — given a well defined electric input signal. The characteristics of the
transducers used in the following expcriments are given in Section 3.4.

3.1.2 Conversion from acoustic energy

The resulting scattered acoustic pressure P~ registered by the transducer, has to
be converted into a format that computers can work with: a series of numbers. The
acoustic pressure is converted into an electrical signal by means of the transducer.
The resulting signal is a continuous, analogue signal. Since computers work with
discrete, digital signals however, a second conversion is needed. In this step, an A/D-
converter converts the analogue voltage into a series of digital values. A/D converters
are characterised by their sampling frequency — the number of conversions they can
perform per second — and their resolution — the number of discrete values that a
converted signal can have. Typically, the resolution is expressed in the number of
bits used by the A/D converter. In the following experiments, an A/D converter
with a sampling frequency of 100MHz and a resolution of 12 bits is used.

After the A/D conversion, an integer value in the range [0...4096] is obtained and
stored in ASCII format on a storage medium.

3.2 Transducers

Piezoclectric transducers are described by Bray and Stanley (1997). These trans-
ducers convert electric signals into mechanical waves and vice versa. The surface of
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a transducer is assumed to be perfectly rigid. As a consequence, the particle velocity
is constant along this surface.

3.2.1 Wavefield emitted by a flat cylindrical radiator

A description of the radiation of cylindrical sources can be found in Pierce (1989)
or Koek (1991). The surface of the radiator is located in the {z,y} plane, with the
origin of the coordinate system in the centre of this surface. The configuration is
shown in Figure 3.2. Once the normal velocity V,,(w) on the surface S of a radiator

Fig. 3.2 Geometry of a cylindrical radiator with a flat surface. The resulting pressure
will be calculated at the point x = (z,vy, 2).

is known, the pressure at a point outside this radiator can be calculated using the
Rayleigh Integral of the first kind — see Berkhout (1987):

P(x,w) = %” /S Vn(w)wds, (3.1)

where 7 is the distance between the evaluation point x and the point of integration
on S. If the vertical projection of the evaluation point x on the plane of the surface
of the radiator is located inside this surface, it follows from Equation (3.1) that

pcVn(w)

2n
P(x,w) = pcVy(w) exp(—j%z) — %9_0 exp(—j%rz(ﬂ))d& (3.2)

where r5(8) is the distance between the boundary of the surface S and the considered
point x. In Figure 3.3, the amplitude of the wavefield as a function of distance along
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the symmetry axis and along the radius is shown for 4 monochromatic waves with a
frequency of respectively 5, 10, 15 and 20 MHz. The transducer has a flat circular
surface with a radius of 6.356 mm. From the figures, it can be seen that — at

radius [mm radius [mm
0 [ L —5 0 [ 15

radius [mm radius [mm
_g i bl 6

(a) 5 MHz (b) 10 MHz (c) 15 MHz (d) 20 MHz

Fig. 3.3 Amplitude of the monochromatic wavefield emitted by a cylindrical transducer
with o flat surface. High amplitudes are coloured dark, low (i.e. negative) am-
plitudes have lighter colours. The radius of the surface is 6.356 mm.

least in the considered region — the positions of the extreme values of the wavefield
amplitude are very dependent on the used frequency.

The wavefield at the axis of the transducer can be calculated by varying x along the
z-axis. In this case, Equation (3.2) is written as

P(0,0,2,w) = pcV, (w) (exp(—j%z) - exp(—j%\/ (R? + z2)) (3.3)

with R the radius of the transducer surface.

Equation (3.3) represents the superposition of two waves, the first being emitted by
a plane wave source on the surface of the transducer, the second being emitted by
the edge of this surface. Since these waves interfere constructively and destructively
with each other, the waveficld along the z-axis shows local minima and maxima.
Furthermore, due to the presence of w in Equation (3.3), the locations of these
local extrema are frequency-dependent. The amplitude term of the pressure in
Equation (3.3) is given by

| (0,0, 2,w) |= pcVn(w)\/Q — 2cos [% (\/RQ e z)] (3.4)

Figurc 3.4 shows this amplitude term for different frequencies. It is clearly observed
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Fig. 3.4 Amplitude term of the acoustic pressure of a flat cylindrical transducer along the
symmetry aris.

that close to the transducers surface, the wavefield varies rapidly. This is more
pronounced for high frequencies. It can be shown that the last maximum on the

2
symmetry axis occurs at z = ‘;fc. The region between the transducer and the

position of the last maximum is called the near field.

It will be checked now whether the wavefield in a small region can be considered as
a plane wavefield.

From Equations (2.79), (2.80) and (2.81), two important characteristics for plane
waves can be derived:

e the amplitude of the wavefield is independent of the depth;

o the phase of the wavefield decays linearly along the z-axis with “Z.

In Figure 3.5, the amplitude variations along the z-axis in a small region are shown.
It is clearly seen that the amplitude variations are rather large and very frequency
dependent.

In Figure 3.6, the phase variations along the z-axis are shown, after being corrected
for the linear phase behaviour that occurs in a plane wave. Again, it is clear that
these residual phase variations are frequency dependent.

As a consequence, the wavefield emitted by a flat cylindrical radiator can not as-
sumed to be plane in the region of interest for the experiments in this chapter®.

!Due to practical limitations, the distance between the transducer and the target is typically
between 10 mm and 100 mm.
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Fig. 8.5 Relative amplitude of the acoustic pressure of a flat cylindrical transducer along
a small region at the symmetry azis for different frequencies.
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Fig. 3.6 Relative phase of the acoustic pressure of a flat cylindrical transducer along a
small region at the symmetry azis for different frequencies, after correcting for
the linear plane wave phase term.

3.2.2 Wavefield emitted by a cylindrical focusing radiator

In this subsection, the wavefield emitted by a radiator with a concave cylindrical-
symmetric surface vibrating with a uniform normal velocity is calculated. Expres-
sions for this configuration are derived by O’Neil (1949).

A typical example of a vibrating concave radiator is a focussed transducer, used in
ultrasonic inspection. Unlike flat transducers, focussed transducers have a curved
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radiating surface. One of the consequences of this geometry is that the energy
emitted by the secondary sources present at the radiating surface is "focussed” at a
specified point. It will be shown that the location of this focus point is only slightly
frequency dependent.

In addition to the geometry of Figure 3.2, the definitions in Figure 3.7 have to be
considered.

ARRRRRRRARRRRRRAN

Fig. 3.7 Geometry of concave spherical radiator.

The radius of curvature of the radiating surface is given by C and the depth of the
transducer, h, is the distance between the centre of the transducer surface and the
projection of the boundary of the surface on the z-axis (see Figure 3.7). Further, B
is the distance between the observation point on the axis and the boundary of the
surface. Assuming that both the wavelength and the depth of the transducer h are
small compared with the radius C, the Rayleigh integral of Equation (3.1) for an
observation point located at the symmetry axis {z,y} = 0 can be approximated by

, C B W
P(x,w) = P(0,0,2,w) =~ ]prn(w)a-_—z/ eXP(‘JZT)dT
k4

= GpeVe) e sin( 2 "D exp(~i M (2)) (35)

with
t(z)=B -z (3.6)

and
Mz) =2 ;’ z (3.7)

An approximation for the position of the maximum pressure on the z-axis is given
by
12C

— 3.8
“TR2 + 12 (38)

Zmaz ~ C —
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In Figure 3.8, the amplitude of the pressure is given as a function of the distance 2
towards the transducer. The considered transducer has a surface radius of 6.35 mm
and a curvature radius of 76 mm. The acoustic velocity ¢ of the considered medium
is 1480 ms ! and the amplitude for 4 frequencies is displayed.

amplitude

0.6

Fig. 3.8 Amplitude of the acoustic pressure of a focussed transducer along the symmetry
azis.

Comparing Figure 3.8 with Figure 3.4, it follows that the locations of the maximum
amplitude for different frequencies are closer to each other when a focussed trans-
ducer is used. In this context, the term focus zone is used to indicate the region along
the z-axis where the monochromatic waves that are present in the source wavefield
have their maximum value.

Between the transducer and 2p,4,, the amplitude of the pressure shows rapid fluctu-
ations. In this region, the pressure is extremely sensitive to changes in distances. In
the neighbourhood of z,,4., the pressure still shows variation with the distance but
they are smoother. The amplitude variations in a region around the focus point are
shown in Figure 3.9, and the phase variations  after being corrected for the linear
plane wave phase term — are shown in Figure 3.10.

In a small region around the focus point, the amplitude term is almost constant,
and the phase variations almost follow the phase variations that are present in plane
waves. Therefore, the wavefield in a small region around the focus point -— the
focus zone - can be assumed to be plane. Note that the considered laminated
target materials have a thickness that generally fits within this focus zone.



68 Measurements

relative amplitude

0.7 T —T
0.075 0.080

z[m]

Fig. 8.9 Amplitude of the acoustic pressure of a focussed transducer along a small region
at the symmetry azis for different frequencies.
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Fig. 3.10 Phase of the acoustic pressure of a focussed transducer along a small region
at the symmetry azis for different frequencies, after correction for the linear
plane wave phase term.

3.3 Preprocessing

Since most processing algorithms use floating point values, it is necessary to convert
the ASCII numbers into a floating point format. The first step in the preprocessing
converts the obtained ASCII values into a 32-bit IEEE float-representation. During
this conversion, the floating point values are ”centred” around the zero-axis, since
the ASCII values all are positive numbers, while the pressure can be both positive
and negative.
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In the forward model — as developed in Chapter 2 — the influence of "noise” is
neglected. It is assumed that the measured values are the perfect mathematical
results of a functional acting on a test function. The devices that convert these
physical quantities into a series of numbers, are not perfect though.

In practice, the clean signal will be more or less disturbed, due to several phenomena.
The influence of the measurement on the measured value is described by Sydenham
(1982) and a statistical treatment of the measured values can be found in Johnson
and Leone (1977). The difference between the actual signal and the signal that
would be present if only the phenomena described in Chapter 2 were present, will
be called noise.

A classification of measurement errors that result in the presence of noise, is given
by Sydenham (1982). Two types of noise are distinguished here?: noise due to
systematic errors, and noise due to random errors. The first type of noisc may occur
in the A/D converter, when some component is badly calibrated and produces an
erroncous value, independent of the naturc of the measurement — i.e. an amplifier
having a constant but non-linear behaviour.

The second type of noise is also called random noise, white noise or uncorrelated noise
since — in contradistinction to systematic noise — the noise in one measurement
is independent from the noise in another measurement. The expected value for this
noisc is zero, which is expressed by

N
. 1
E(n) = lim — ; nj = 0. (3.9)

The operator £ returns the expected value of the argument, n; is the noise present
in measurement j and N is the number of performed measurements. If there is
only white noise present in a measurement, the measured value y; is related to the
noise-free signal s; by

Yj = 8 +ny. (3.10)
Since the signal part s; is assumed to be repeatable and constant, it follows that
E(sj) =85 =s. (3.11)

If the wavefield is represented by its pressure, the encrgy in that wavefield is propor-
tional with the squared pressure. Since the wavefield contains a real signal-portion
and a noise-portion, the signal-to-noise ratio can be defined by

sn = ’/:Z% (3.12)

2The two types of noise described here arc only two extreme types. In practice, there exist many
intermediate types of noise, which are a combination of systematic noise and random noise.
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The expected value for this signal to noise ratio is, for a single measurement, given
by

E(sn) = 4| =—=. (3.13)

stacking

Adding the results of measurements all done under repeatable conditions leads to

N 1 N
Zw = NZ(SJ'"'HJ')' (3.14)
j=1 j=1

This procedure is known as stacking. The expected value for the signal to noise ratio

in the stack is now given by
N2g2
E(sn) = —J_Vi—z (3.15)
E(1225=1m)

Since for uncorrelated noise it holds that £(| E;V: %) = NE(|nj|?), it follows that
the signal to noise ratio for the sum of the measurements has increased with a factor

VN.

Stacking also allows one to predict the probability that the result of a measurement
will occur in a given interval. The standard deviation on a series of N measurements
y; is defined as

N
21 vi

T (3.16)

Oy =
If the measured quantity y is randomly distributed around a central value £(y) —
i.e. the noise follows a Gaussian distribution —, probability-intervals can be defined.
For example, there is a 99% probability that a next measurement will be located
in the interval [£(y) — 30y, E(y) + 30y]. More information on probability, standard
deviation and its applications can be found in the statistical literature — e.g. Mood
(1987).

aligning

For reasons explained below, it is not relevant to simply add the data obtained by
the measurements performed in this research. The trigger system is known to be
very inaccurate and not reliable. This shortcoming in hardware is compensated
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(a) individual traces (b) stack of the individual traces

Fig. 3.11 Stacking of 8 successive reflection measurements of a glass beam embedded in
water. After stacking, the signal has a mazimum value of 0.758.

for by software. The data obtained by 8 successive measurements is shown in Fig-
ure 3.11(a). These measurements are obtained from the reflection of the source
wavefield due to a glass beam embedded in water, and are treated in more detail
in the next section. The traces are normalised, i.e. all samples are divided by the
value of the maximum sample occurring in the trace.

The measurements were taken without changing any environment variable, and the
arrival time should be the same, but this is apparently not the case. The trace
in Figure 3.11(b) is obtained by adding the 8 corresponding values in the different
traces for each time sample. The values in the resulting trace are divided by the
number of traces added.

Since the positions of the maximum value in the different traces are not the same in
each trace, the maximum value in the stack will not equal the sum of the maximum
values in each trace divided by the number of traces. An improvement is obtained
by aligning the traces in such a way that the maximum value in each trace occurs
at a fixed position. In Figure 3.12(a), each trace is shifted and the maximum value
occurs at sample 15 — which occurs at 0.14 ps. Due to the normalisation of the
individual traces, the maximum value of the averaging procedure after this alignment
equals unity. Comparing the average of these traces - Figure 3.12(b) — with
Figure 3.11(b) shows that the obtained signal is higher now, resulting in a better
signal-to-noise ratio.
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Fig. 3.12 Stacking of 8 successive reflection measurements of a glass beam embedded
wn water. The traces in Figure 3.12(a) are obtained by shifting the traces in
Figure 3.11(a) with a discrete number of samples until their mazimum value
occurs at sample 15. The mazimum value in the stacked signal is now 1.00.

Also, when adding non-aligned traces to each other, the resulting wavelet will be
smoother, and high-frequency information is lost.

peak detection

Due to the fact that the signal is sampled at discrete time intervals, it is very
unlikely that the maximum value of the continuous signal will occur at a sample
point. Different methods can be applied in order to estimate the position and value
of the maximum value that occurs in the continuous signal. These peak detection
methods will be described in the next chapter. A fast and — for the current purpose
— sufficient method is the polynomial interpolation.

A second-order polynomial interpolation is performed for obtaining a better approx-
imation of the position of the maximum. The sampled maximum value and the two
adjacent points are used for this interpolation. This method will return the exact
position of the maximum if the signal can be described by a parabolic equation in the
neighbourhood of its maximum. The result of this procedure is given in Figure 3.13.
Although the improvement obtained by this method might be rather small it is an
important one — as will be shown later.
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Fig. 3.13 Stacking of 8 successive reflection measurements of a glass beam embedded in
water. The traces in Figure 3.12(a) are obtained by shifting the traces in Fig-
ure 8.11(a) with their mazimum value at sample 15. A second order polynomial
interpolation 1s used to detect the mazimum in each trace. The mazimum value
in the stacked signal is now 1.03.

The grey level plots in Figure 3.14 show the influence of the alignment, by means of
a peak-detection and a second order polynomial interpolation in the preprocessing
for a set of 256 successive measurements.

3.4 Source signal

Together with the response function of the configuration, the signal emitted by
a transducer is responsible for the received scattered waveficld. In the frequency
domain, this is expressed by

Py(w) = Xo(w)S(w), (3.17)

where I is the pressure of the scattered wavefield at the transducer, Xy is the
response function of the material due to an impulse at the transducer position and
S is the frequency-domain representation of the used source.

The knowledge of the source-signal is important both for performing simulations -
as is shown in Chapter 2 — and for applying the inversion algorithms — as will be
shown in Chapter 4 and Chapter 5.
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Fig. 8.1} Preprocessing of 256 successive measurements. A time-shift is applied to all
traces in (a) until their mazimum value occurs at 0.15 us

Fig. 3.15 Setup for the measurement of the source signal. A transducer and a glass beam
are embedded in water.

The signal emitted by a transducer is dependent on the geometrical and material
properties of the transducer. In order to perform reliable simulations, the source
signal has to be highly repeatable. This property is tested for three different trans-
ducers. The source signal is obtained by measuring the reflection of the emitted
wavefield on a homogeneous glass beam. The setup is shown in Figure 3.15.
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The whole configuration — transducer and target material — is embedded in water.
The ecnergy emitted by the transducer travels through the water towards the glass
beam. Part of the energy is reflected there, and another part is transmitted into
the glass. The reflected energy travels through the water back to the transducer
where it is recorded. The thickness of this glass beam is chosen such that no other
reflections occur in a time window that is large enough to hold the first reflection.

The distance between the transducer and the target will be chosen in such a way that
the first reflection contains as much energy as possible. For focussed transducers this
means that the target should be placed near the focus point — see subsection 3.2.2.
For flat cylindrical transducers, the maximum value of the wavefield along the axis
of the transducer is strongly frequency dependent. The distance between transducer
and target is chosen in such a way that the energy of the first reflection is maximal.

3.4.1 15 MH2z, unfocused transducer

A 15 MHz Panametrics transducer 2 is placed at about 50 mm above a glass beam.
The source-signal, being the result of the preprocessing procedure described in the
previous section, is shown in Figure 3.16(a). The resulting signal in this figure is ob-
tained by adding 512 aligned measurcments®. In order to check for the repeatability
of the signal, some basic statistical operations are performed. The individual traces
are denoted by s;(¢) or more compactly s; where j varies from 1 till N with N the
number of performed measurements. The resulting source signal obtained by the
preprocessing is called s(¢). For each sample point of s(t), the standard deviation
o(t) can be calculated, using

2
oo \/zj 1<sj<t>—s< > o1

The standard deviation is an indication for the repeatability of the signal. Larger
variations between the different traces will result in a higher standard deviation.

In Figure 3.16(b), the 99% probability interval is plotted for all samples in the time-
region of interest. The smaller this interval is, the morc repeatable the measurements
are.

Since a number of calculations — both in simulations and inversion algorithms —
are performed in the frequency-domain, the frequency-content of the source-signal

3The term 15 MHz is used for naming conventions, and it does not mean that this transducer
only generates a monochromatic wave of 15 MHz. 'The name is used to indicate that the energy
content in the frequency domain of the wavefield emitted by this transducer is centred around
15 MIlz, as will be shown in this subsection.

4Before the measurements are aligned, the traces are scaled so that they contain an equal amount
of energy.
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Fig. 3.16 Source signal emitted by a non-focussed Panametriz transducer with a centre
frequency of 15 MHz.
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Fig. 3.17 Frequency content of the source signal from the 15 MHz non-focussed trans-
ducer — see Figure 3.16(a).
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is of particular interest. In Figure 3.17, the amplitude and phase information of the
source-signal as a function of the frequency is given.

A problem with this transducer is that the plane wave approach is not valid at the
depth of 50 mm. Indeed, it has been shown in section 3.2.1 that fast and frequency-
dependent fluctuations of the energy contained in the wavefield occur in this region.

3.4.2 15 MHz, focussed transducer

The experimental results in this section are obtained using a Panametrics transducer
with a centre frequency of 15 MHz, and with a focus point at 76.2 mm. Applying
the preprocessing procedure on 256 successive measurements results in a time-signal
shown in Figure 3.18(a). The 99% probability interval is given in Figure 3.18(Db).

The frequency behaviour of this transducer is shown in Figure 3.19 — both the
amplitude term and the phase term are given.

An advantage of this transducer over the previous one is that the plane wave ap-
proach is valid at a reasonable depth — 76.2 mm.
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Fig. 3.18 Source signal from a 15 MHz transducer, focussed at 76.2 mm.
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Fig. 3.19 Frequency content of the source signal from a 15 MHz transducer focussed at
76.2 mm.

3.4.3 20 MHz, focussed transducer

The results in this section are obtained using a Panametrics transducer with a centre
frequency of 20 MHz, and with a focus point at 50.8 mm. Applying the preprocess-
ing procedure on 256 successive measurements results in a time-signal shown in Fig-
ure 3.20(a). The 99% probability interval is given in Figure 3.20(b). The frequency
behaviour of this transducer is shown in Figure 3.21. The frequency behaviour of
this transducer is shown in Figure 3.21. From the frequency spectrum, it follows that
this transducer shows relatively high amplitudes for higher frequencies. As a conse-
quence, finer details can be distinguished. A drawback of this transducer, however,
is that the emitted energy is smaller than the energy emitted by the 15 MHz focussed
transducer. Also, the repeatability of the signals from the 20 MHz transducers tends
to be lower than the repeatability of the source signal from the 15 MHz focussed
transducer — compare Figure 3.20(b) with Figure 3.16(b) and Figure 3.18(b).

The choice of an optimal transducer therefore is a compromise between time reso-
lution, repeatability and power.
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Fig. 3.20 Source signal from a 20 MHz transducer, focussed at 50.8 mm.
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Fig. 3.21 Frequency content of the source signal from a 20 MHz transducer focussed at
50.8 mm.
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3.5 Reflection measurements

The measurements in the previous section are reflection measurements — the wave-
field is generated and recorded at the same side of the material. They are primarily
meant for qualifying and quantifying the source waveficld, though.

In this section, more reflection measurements are performed. After preprocessing
the data, they are compared with the results from simulations — using the theory
developed in Chapter 2.

3.5.1 Aluminium disk

In this experiment, a homogeneous aluminium disk is embedded in water. The
thickness of the disk is about 0.8 mm and the lateral dimensions are large compared
with the thickness. A transducer with afocus zone at 76.2 mm and a centre frequency
of 15 MHz is placed at about 77 mm above the material — the transducer is under the
water level. The setup is the same as the configuration for the characterisation of the
source signal, except that the glass beam is replaced by a thin aluminium disk. In this
experiment 256 successive measurements are performed. Each measurement contains
4096 samples, making the recording time for each trace 40us. In Figure 3.22(a) the
result of this scan is shown. Again, note the different time-offset values of the first
reflections, due to a non-consistent hardware trigger. In Figure 3.22(b) the traces
are aligned so the first reflection of each trace occurs at the same time.

Since the measurements are all performed using the same geometrical configuration,
it is expected that all traces look the same. To check this repeatability, a statistical
analysis is performed on the 256 traces. In Figure 3.23(a) the average of the 256
traces is calculated. In Figure 3.23(b) the 99% probability interval is shown.

The 99% probability interval is rather large for small values in the trace. This is
understandable since there is always some level of background noise present. When
the signal has a low amplitude, the noise is more noticeable. Especially in regions
where the signal is low, the effect of stacking is important.

In Figure 3.24, the predicted wavefield based on the theory in Chapter 2 is shown and
compared with the measured data. For this prediction, the actually measured source
signal of the 15 MHz focussed transducer has been used. The predicted wavefield
looks very similar to the actual measured data.

Obtaining information from internal multiples

Both in the measured and the predicted wavefield, multiple reflections can clearly be
distinguished. Although multiples are often considered as doing harm to the data,
in some cases they provide valuable information.
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Fig. 3.22 Reflection measurements on an aluminium disk of 0.8 mm thickness. The effect
of preprocessing is shown.

The distance between the multiples is an indication for the thickness of the layer,
and the decrease in amplitude is related to the reflection coefficients at the interfaces
between the layers.

Performing cubic interpolation with the use of 3 samples around the peak value in
each multiple reflection reveals the two-way traveltime in a layer and the amplitudes
of the considered reflections with a sufficient accuracy.

It can casily be shown that in the case of a one-layered material, the decrease in
amplitude is related to the reflection coefficient water-aluminium — being Ry - by

-1

T = R2, (3.19)

b

where A; is the amplitude of the maximum value in the i-th multiple.

In Table 3.1, the calculated reflection cocfficients and the two-way traveltimes based
on a comparison between subsequent multiples are given.

The series of estimated reflection coefficients is reasonably centred around the real
reflection coefficient — which is Ry = 0.84206— with only minor deviations. This
is an indication that the plane wave theory for an instantaneously reacting medium
— as developed in Section 2.2.2 — can be applied to the casc of a ”thin” aluminium
layer embedded in water and located in the focus zone of a focussed transducer.
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Fig. 3.23 Reflection measurement on an aluminium disk with 0.8 mm thickness.
Figure 8.23(a) shows the time signal after stacking 256 aligned measurements.
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Fig. 3.24 Reflection on aluminium disk, a comparison between the measured (solid line)
and predicted (dotted line) signal.
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Derivation of Ry and At
Multiple Ry At[us] | thickness (mm)
1-2 0.8663 | 0.24380 0.768
2-3 0.7989 | 0.24610 0.775
3-4 0.7897 | 0.24416 0.769
4-5 0.8039 | 0.24549 0.773
5-6 0.8557 | 0.24803 0.781
6-7 0.8241 | 0.24929 0.785
7-8 0.8253 | 0.25370 0.799
8-9 0.7832 | 0.25488 0.803

Table 3.1 Calculated reflection coefficient for a water-aluminium interface, two-way
traveltime in the aluminium layer and thickness of the layer, based on each
pair of subsequent internal multiples.

Composition of Prepreg samples
Name number of layers | orientation | thickness (mm)
Prepreg-2 2 0-90 0.25
Prepreg-3 3 0-90-0 0.375

Table 3.2 Structure of the two different inspected prepreg samples.

3.5.2 Prepreg

A prepreg layer consists of glass fibres in an epoxy resin. The structure of prepreg
is discussed in Appendix A. In this subsection, two configurations of prepreg are
inspected. Their composition is given in Table 3.2.

Again, for each prepreg sample 256 successive measurements are performed, record-
ing 4096 samples with a sampling rate of 100 MHz. Figure 3.25 shows a time-window
of these measurements after removing the static component and applying a Butter-
worth bandpass filter® suppressing frequencies below 3 MHz and above 26 MHz. The
first preprocessing step is the same as in the case of a reflection on an aluminium
disk: the traces are aligned in a way that the peaks of the first reflections occur
at the same position. The result of this step is given in Figure 3.26. Again, the
average time-traces for both experiments are calculated after the traces have been
aligned. Together with the 99% probability interval, the results are shown in Fig-
ure 3.27. Comparing the preprocessed signal from Figurc 3.27(a) with the predicted
signal from Figure 2.15 shows that the forward model without attenuation cannot
be used here. The amplitude of the arrivals at later times are overestimated in Fig-

5A description of this bandpass filter can be found in the literature — e.g. Chua et al. (1987).



84 Measurements

trace number trace number

50 100 150 200 250 50 100 150 200 250

time [us]
time [us)

(a) Prepreg 2 ‘ (b) Prepreg 3

Fig. 3.25 Reflection measurements on two prepreg samples. A Butterworth bandpass
filter has been applied, but no further preprocessing has been done.
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Fig. 3.26 Reflection measurements on the prepreg samples from Figure 3.25 after aligning
the traces to each other.
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Fig. 3.27 Reflection measurements on two prepreg samples according to the configurations
of Table 3.2; 256 traces are aligned and stacked. (a) and (b) show the time-
averaged values, (c) and (d) show the 99% probability interval.
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ure 2.15(a).

The measurement is compared with the results predicted by the forward model us-
ing attenuation coefficients of respectively 0, 1000 and 2000 m~" and the results are
shown in Figure 3.28.
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Fig. 3.28 Comparison between predicted and measured prepreg reflection responses on a
Prepreg-2 sample.
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Fig. 3.29 Comparison between predicted and measured prepreg reflection response on a
Prepreg-8 sample.

The same procedure is followed for the Prepreg-3 sample, and the results are shown
in Figure 3.29. Although there is no perfect match, it can be seen that the use of
an attenuation coefficient of 1000 m~! gives the best result.

Hence, including the attenuation phenomena introduced in Section 2.3 in the for-
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First Glare 2/1 target in water
Layer | material | Az (mm) | p ( ﬁ% v (F) | v (1/m)
0 water 76 1000 1480 0
1 aluminium 0.3 2740 6300 0
2 prepreg 0.250 1600 3100 1000
3 aluminium 0.3 2740 6300 0
4 water 00 1000 1480 0
Table 3.3 Structure of the first Glare sample
Second Glare 2/1 target in water
Layer | material | Az (mm) | p (%) | v () | v (1/m)
0 water 76 1000 1480 0
1 aluminium 04 2740 6300 0
2 prepreg 0.250 1600 3100 1000
3 aluminium 04 2740 6300 0
4 water o0 1000 1480 0

Table 3.4 Structure of the second Glare sample

ward model, results in better predictions when the target material is prepreg. The
model incorporates friction and viscosity in the medium, two phenomena that allow
the dissipation of acoustic energy.

Since there is no perfect match yet, it is reasonable to assume that also other phe-
nomena occur inside the prepreg material. Note that prepreg is a heterogeneous
medium (fibres are embedded in resin), and the exact wavefield propagation effects
are not fully understood yet.

Furthermore, there can be an actual deviation for material properties (density, ve-
locity) and thickness that can contribute to this mismatch.

3.5.3 Glare

The structure and naming convention of Glare is explained in Appendix A. In this
subsection, reflection measurements arc performed on two different glare-configura-
tions. Their setups are given in Tables 3.3 and 3.4.

The targets are ecmbedded in water, and the distance between the target and the
focussed 15 MHz transducer — described in Subsection 3.4.2 — is about 76.2 mm.
This means that the target is located in the focus zone of the transducer.

For each glare configuration 256 successive measurements are performed, recording
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Fig. 3.80 Reflection measurements on two Glare samples, before data preprocessing. The
configurations of the samples are given in Table 3.3 and Table 3.4.

4096 samples with a sampling rate of 100 MHz. Figure 3.30 shows a time-window
of these measurements after removing the static component and applying a But-
terworth bandpass filter suppressing frequencies below 3MHz and above 26MHz.

The first preprocessing step is the same as in the case of a reflection on an aluminium
disk or on a prepreg sample: the traces are aligned in such a way that the peaks
of the first reflections occur at the same position in each trace. The result of this
step is given in Figure 3.31. Again, the average time-traces for the two experiments
are calculated. Together with the 99% probability interval, the results are shown in
Figure 3.32.

The measured reflection signals are compared with simulated results. The config-
uration for these simulations is given in Table 3.3 and Table 3.4 — which contain
the parameters of the used materials. The result of this comparison is given in
Figure 3.33.

It can be observed that there is a good match between the simulated reflection re-
sponse and the measured signal. Differences between the simulated and measured
signal can be due to errors in the developed model and to incorrect product specifi-
cations (layer thickness, density and velocity) by the manufacturer.
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Fig. 3.31 Reflection measurements on two Glare samples, after aligning the traces to each

other. The configurations of the samples are given in Table 3.8 and Table 3.4.
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Fig. 3.32 Reflection measurements on two Glare samples according to the configurations
of Table 3.8 and Table 3.4; 256 traces are aligned and stacked. (a) and (b)
show the time-averaged values, (c) and (d) show the 99% probability interval.
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Fig. 3.33 Comparison between simulated reflection response (solid line) and measured
reflection response (dotted line) on two Glare 2/1 samples.
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Chapter 4

Recursive Direct Inversion

In Chapter 2, a description of the acoustic wavefield as a function of the material
parameters of a horizontally layered target has been derived. In most practical prob-
lems, the wavefield — the acoustic pressure or velocity — is the measured quantity
and the material parameters have to be derived. In this chapter, the first of two
methods is described that will yield the acoustic parameters of the material, based on
the measured wavefield. The method described here is based on direct inversion of
the equations in Chapter 2.

4.1 Inversion parameters and acoustic parameters

The forward algorithm developed in Chapter 2 makes use of the knowledge of the
traveltime in cach layer and the reflection coefficient at cach interface. Therefore,
each inversion algorithm that is based on this forward algorithm will result in an
estimation of the traveltimes and reflection coefficients.

In practice, one is often interested in paramecters that are more directly related to
the material. The traveltimes and reflection coefficients contain information about
the material parameters, and a conversion can be applied in order to obtain the
desired material parameters.

Four interesting parameters of layer ¢ are the depth Az;, the density p;, the acoustic
velocity ¢; and the specific acoustic impedance Z;. Relationships between these
parameters and the traveltimes and reflection cocfficients are given by the following
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equations:
1+ R;
Z; = Z; 4.1
AZ@ = Citi (4.2)
Az
¢ = —4 (4.3)
t;
Z.
;o= . 4.4
pi - (4.4)

Any of these equations can be used, depending on the application and the a-priori
knowledge. For example, if the acoustic velocity of a layer is well-known a priori,
Equation (4.2) can be used in order to estimate the layer thickness.

On the other hand, if the layer thickness is assumed to be well-known, the acoustic
velocity is obtained using Equation (4.3). The specific acoustic impedance is given
by Equation (4.1), and Equation (4.4) can be used to obtain the density.

4.2 Inverse theory

The forward algorithm is constructed in a recursive way, by adding the influence of
a layer in each recursion step. For convenience, the construction steps are repeated
here !.

The algorithm is initiated by the expression for the interface-free pressure at the top
of layer n — the lower-most layer. In the frequency domain, this expression is given
by Equation (2.163) 2:

PY = W, R,W,S. (4.5)

The frequency representations of the total scattered pressure at this point, and of
the interface-free pressure at the top of the next layer are obtained by the recursive
steps:

Pos
P o= i 4.6
S+ RiﬁlPiO ( )
P, = Wi (RiaS+ (1-R)) P)Wi_y. (4.7)

It follows from this algorithm that in each step — obtaining an expression for P |
based on an expression for P — use is made of a frequency dependent scalar W;_; (w)
— the propagation term — and a scalar R;_; — the reflection coefficient. This

! The explanation of the used symbols can be found in Chapter 2.

2For simplicity, the frequency-dependence is not explicitly written in the following equations.
The reader has to keep in mind that P;, Pio, W and S are dependent on the angular frequency w.
If one of the media at interface 7 shows relaxation phenomena, also R; is frequency-dependent.
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reflection coefficient is a real-valued frequency independent scalar in the case the
corresponding interface is located between two instantaneously reacting media. If
one of the media shows relaxation phenomena, however, R; is complex valued and
frequency dependent. It was shown theoretically in Section 2.4 and with a numerical
example in Subsection 2.6.2 that for the configurations discussed in this research,
R; can be approximated by a real frequency-independent scalar.

The propagation term W;_; is, by means of Equation (2.79) directly related to the
scalar Az;—; — the thickness of layer i — 1. As a consequence, two scalars that are
related with the added layer and layer-interface are introduced in each step. In the
inverse algorithm, these two scalars are obtained in each step.

The inverse expressions for Equations (4.6) and (4.7) are given by

P) | — Wi 1Ri_1W;_1S

P, : ) 4.8
Vs (- ) W )
P;S
Q0 _ %
P’ = ——S “PR. . (4.9)

Equations (4.8) and (4.9) give an expression for obtaining the interface-frec pressure
P? at the top of layer ¢ as a function of the interface-free pressure P2 at the top
of layer ¢ — 1.

Equation (4.8) has to be interpreted as follows: the acoustic pressure P; at interface
i is obtained from the pressure P? | just below interface i — 1 by

e subtracting the primary arrival from the pressure measured at interface i — 1
— by means of the term W;_ | R;_{W; 15 .

e correcting for propagation effects twice W;_; in the denominator — and
transmission effects — by means of (1 — R?_,).

In Equation (4.9), the multiples related to interface z; are eliminated from the pres-
sure P, resulting in the interface-free pressure Pio.

The right-hand sides of Equations (4.8) and (4.9) have to be evaluated for a number
of angular frequencies w. It follows from the equations that these evaluations can
be done separately — the value of P?(w4) does not influence the value of P?(wg)
when wp # wy.

The algorithm is initiated by posing

P (w) = Py(w), (4.10)

which is in agrecment with the assumption made in the previous chapter — the
distance between transducer and material is large enough so no water layer-related
multiples will occur during the considered time frame.
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4.3 Obtaining the wavefield parameters

Ultimately, one is interested in the material parameters of the constituting lay-
ers. Unfortunately, these parameters are not measured directly by acoustic mea-
surements. It is possible, however, to retrieve the acoustic parameters from the
measurements. These acoustic parameters can then be translated into material pa-
rameters.

As mentioned in the previous section, cach recursion step requires one frequency
dependent scalar — W;_;(w;) — and one scalar R; 1 — to be known.

The scalar W;_;(w;) is obtained by a discretization of the function W;_; (w), which
is in the case of propagation in an instantaneously reacting medium defined as —
see Equation (2.79)

Wi_1(w) = exp(—jwt;_1) (4.11)

with ¢;_1 = Az;_1 /c;—1 the one-way traveltime in the considered layer.
It follows that the scalars W;_1 (w;) can be reconstructed once the traveltime in layer
1 is known.

According to Equation (2.128), the propagation factor in a medium with relaxation
is given by

Wi_1(w) = exp(—jwt;—1) exp(—vrAz;_1). (4.12)

As a consequence, also the attenuation coefficient v, and the layer thickness Az; |
need to be known.

From Equation (4.8) it follows that the total pressure at the top of layer ¢ can now
be calculated, provided that also the source signal S(w) is known 3.
In the following discussion, it is assumed that this is the case.

Assumption 5: Repeatability of source

B The source-signal is well-known.

This Assumption is satisfied when the source signal is highly repeatable. The source
signal can then be obtained as explained in Section 3.4.

There are two reasons for obtaining the traveltimes in the constituting layers from
the measured wavefield:

e the traveltime is necessary for the application of Equation (4.8);

3In practice, the source signal is obtained as a time series s(t), and a Fourier transformation has
to be applied to this series in order to obtain the frequency representation S(w).
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e the traveltime in a layer is related to the material parameters of that layer.

At this point, two cases will be considered. First, the ideal case where the primary
arrival is completely separated from other arrivals is studied. After that, attention
is paid to the case wherc later arrivals interfere with the primary arrival.

4.3.1 Separated arrivals

In Figure 4.1, the simulated result of a reflection measurement on an aluminium disk
with a thickness of 2 mm is shown. The distance between transducer and target, is
0.1 mm and the aluminium disk is embedded in water. Abstraction is made of the
impedance contrast between the transducer and water and as a consequence, no
water-layer related multiples will occur?. The material parameters of this configu-
ration are given in Table 4.1

Aluminium layer in water
Layer | material | Az(mm) | p (%53-) c () R t (s)
0 water 0.1 1000 1480 | 0.842 | 6.757 x 10"
1 aluminium 2 2740 6300 | -0.842 | 3.175 x 1077
2 water 00 1000 1480 - -

Table 4.1 Material properties for an aluminium disk embedded in water.

The source signal is emitted by a transducer with a centre frequency of 15 MHz and
a focus point at 76.2 mm.

The first arrival due to a reflection at the top interface — is clearly separated
from the second arrival — due to a reflection at the bottom interface — and the
multiple arrivals.

Three methods will be described now for obtaining the desired parameters — the
traveltime in the layers and the reflection coefficient at the interfaces between the
layers. In order to compare the different methods, only the traveltime in the water
layer and the first reflection coefficient will be retrieved. A complete inversion is
given in the subsequent sections.

Using the above mentioned configuration, the true one-way traveltime in the water
layer is 6.757 x 10~%s while the true reflection coefficient at the interface between
water and aluminium is (0.8421.

4The water-layer related multiples are excluded in this simulation, since they will not show up
in the recorded time-frame in actual measurements due to the large distance between transducer
and target.
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Fig. 4.1 Simulation of the reflection response of an aluminium disk with a thickness of
2 mm.

Absolute maximum

Since the first reflection in the response occurs after the wave travelled towards the
target and back to the transducer, the difference in position between a fixed point in
the source signal — which is determined in advance — and the corresponding point
in the response is then the two-way travel time. In this first approach, the positions
of the maximum values occurring in the source signal and the reflection response are
compared. A closer view of the neighbourhood of the maximum values is given in
Figure 4.2.

The maximum value in the source signal occurs at sample 26 (¢ = 25 x 10~8s) while
the reflection response reaches its highest value at sample 40 (¢ = 39 x 10~8s). Since
the sampling rate amounts 100 MHz, the obtained one way traveltime in the water
layer between the transducer and aluminium using this method is 7 x 10~ 2s.

The estimated reflection coefficient is obtained by dividing the maximum value in
the trace by the maximum value in the source signal, yielding 0.767.

Cubic interpolation

It is very unlikely that the maximum value in the analog signal — before sampling
and digitising — occurs at the position of a sample. From Figure 4.2(b), it is clear
that the maximum value in the trace occurs between samples 39 (¢ = 38 x 1078 s)
and 40 (¢t = 39 x 1078 s).
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Fig. 4.2 Detailed look at the mazimum values in the source signal and in the simulated
reflection response of an aluminium disk embedded in water.

The cubic interpolation method aims to reconstruct the signal in the neighbour-
hood of the maximum by performing a second-order polynomial interpolation. This
method will give better results when the actual signal behaves like a second-order
polynomial in the neighbourhood of the maximum ®. A second-order polynomial
requires three known sample points. The sample point where the maximum occurs
and its two adjacent points are used for this.

In Figure 4.3, the result of a second-order polynomial interpolation is compared
with a linear interpolation of the response. It is clear that the maximum after cubic
interpolation is at a different position and has a different value than the maximum
occurring at a sample. Using this method, the estimated traveltime in the water
layer is 6.76 x 10~8s and the reflection coefficient is 0.827.

5 Although the source wavelet is not a second order polynomial, it follows from the measurements
in Chapter 3 that it is reasonable to approximate the source signal in the necighbourhood of the
maximum value with a second-order polynomial.
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Fig. 4.8 Comparison between the signal with linear and cubic interpolation

Sinc interpolation

The method of the cubic interpolation assumes that the signal has a parabolic shape
in the neighbourhood of the maximum. Also, the method only uses information from
3 sample points — the point where the maximum occurs and the two adjacent points.

A band-limited signal can be exactly and uniquely reconstructed if the Nyquist
Frequency — half the sampling frequency — is larger or equal to the upper boundary
of the frequency band of the signal. A smaller sample distance can be obtained by
expanding the frequency spectrum with zeros — which is allowed as the signal has
no frequency content at those frequencies. Since At = Fig with Fs the sampling
frequency, the sample-distance can be as low as wanted.

Using Shannon’s sampling theorem® it is possible to reconstruct the exact value at

a given point, since

p(t) = 'Z p(iAt)hs(t — iAL), (4.13)
with
hy(t) = sine(Fst) = %“%f’” (4.14)

The sinc function is shown in Figure 4.4.

Note that this method can only yield an exact solution if the trace is infinitely long.

L the contribution from samples that are far away from

However, since sinc(r) < —,

8 A formulation and proof can be found in Korner (1993).
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Fig. 4.4 Sinc function around 7 = 0.

the considered point will be small compared with the contributions from points in
the neighbourhood unless the signal has a much higher value at the points far away.

In practice, Equation (4.13) will be approximated by

c+n
p(t) = Y pliAt)hs(t —iAL) (4.15)

i=c—n

where ¢ is the nearest sample point in the neighbourhood of ¢ and n is half the
number of sample points that will be used in the approximation. It is clear that the
more points arc used, the better the approximation will be.

In Figure 4.5, two sinc-interpolation methods with a different number of sample-
contributions are compared against the "exact” signal — which is obtained by re-
sampling the signal by adding zeroes in the frequency domaiu beyond the Nyquist
frequency. It is clear that using a sinc-interpolation method with a high number
of cvaluation-points results in a better approximation than a linear interpolation.
When ”enough” points are used for the sinc-evaluation, the resulting signal coincides
with the ”exact” signal.

Equation (4.15) gives the value of the signal at one specified point. A root-detection
method must be used to yield the t-value which has the maximum signal-value.
As a result of the combination of the sinc-method and the root-detection method,
two accuracy-parameters have to be supplied: the number of samples used in the
sinc-approximation and the accuracy with which the position of the maximum has
to be known. These two parameters can be chosen independently from each other.
However, a position-accuracy parameter of ¢, does not guarantee that the distance
between the calculated position and the position of the real maximum will be at
most €-. It only guarantees that the distance between the calculated position and
the real maximum in the sinc-interpolated signal will be at most €.
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Fig. 4.5 Comparison between the ezact signal and interpolated versions using o linear
interpolation and two sinc-interpolations with 3 and 11 points.

In Figure 4.6, the influence of the number of samples used for the sinc-approximation
is shown. For the configuration described in the beginning of this section, both the
traveltime in the water layer and the reflection coefficient between the water layer
and the aluminium disk are calculated with a position accuracy of 0.001 sample.

Comparison

The parameters returned by the different methods are compared with each other
and with the exact parameters in Table 4.2. As expected, the sinc interpolation
method uses more information and therefore gives better results — especially when
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Fig. 4.6 Influence of the number of samples used in sinc-interpolation on the acquired
material parameters.

Comparison of peak detection methods

Method to (8) Ry

exact 6.757 x 1078 | 0.8421
sample maximum 7x107% | 0.7674
cubic interpolation 6.76 x 102 | 0.8266
sinc interpolation 7 points | 6.747 x 1078 | 0.8476
sinc interpolation 37 points | 6.756 x 1078 | 0.8422

Table 4.2 Material parameters obtained by different peak detection methods.

more sample points are used.

It has to be taken into account though that the values in this table are only valid for
one specific configuration. Even the method using the maximum sample can give
correct results in the case the maximum occurs at a sample point.

4.3.2 Interfering arrivals

In the previous case, where all arrivals were completely separated from each other,
it is guaranteed that the — interpolated = maximum value in a trace is the product
of the maximum valuce in the source signal and the first reflection coefficient. This
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no longer holds when a second event — be it a primary arrival from a second layer
or a multiple reflection in the first layer — arrives before the first event has been
completely detected.

amplitude

time [us]

Fig. 4.7 Interference of the first (dotted line) and the second (dashed line) arrival. The
superposition of these arrivals is shown with o solid line.

Figure 4.7 shows what happens when a second event interferes with the first arrival.
The position and the value of the maximum are altered. This has serious conse-
quences for the peak-detection. The methods described in the previous subsection
will reveal the maximum that is the result of the superposition of the first and the
second arrivals. The inversion method, however, is based on the maximum in the
first arrival and will therefore yield incorrect results.

Whether the different arrivals interfere with each other or not depends on the con-
figuration — the thickness and velocity of the layers — and on the length of the
source wavelet. In order to avoid interference, the wavelet has to be as short as
possible — with the delta pulse as the limiting case. Since in practice all wavelets
are band-limited in the frequency domain, they all have a certain time length. It
is possible however to change the length and shape of a wavelet by altering its fre-
quency spectrum — by means of amplitude and phase modifications.

The frequency content of a signal consists of two properties for each frequency com-
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ponent: the amplitude and the phase. The amplitude is a measure for the energy
in this frequency component. Altering the amplitude therefore means altering the
energy-content of the signal. Changing the phase-component, on the contrary, only
changes the shape of the wavelet without changing the energy-content.

In many seismic applications, it is desirable to have a short wavelet, since this in-
creases the resolution of the images.

More important than the length of the wavelet is the position of the peak. Indeed,
the position and value of the peak will be used to obtain the material parameters of
the considered layer, and to eliminate the effects of this layer in the wavefield. The
wavelets in Figure 4.8 have the same power spectrum but a different phase spectrum.
The maximum value in wavelet (a) occurs after 19.0 x 1078s, while the maximum
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Fig. 4.8 Two wavelets with the same power spectrum but a different phase spectrum. The
peak occurs at different positions and has a different value.

value in wavelet (b) is reached after 7.5 x 10~ 8s. Consequently, when the two-way
traveltime in a layer is less than 19.0 x 10~3s respectively 7.5 x 10~8s, the maximum
in the reflection at the top of the layer will not be reached before the reflection at
the bottom of the layer arrives.

In Figure 4.9, the simulated result of a reflection measurement on an aluminium
disk with a variable thickness embedded in water is shown. The thickness varies
from 0.05 mm on the left side to 1.6 mm on the right side’. Above the disk is

TAlthough the pictures show a linear increase in the thickness, it is assumed that the thickness
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a water layer with a thickness of 0.8 mm. No water-layer related multiples are
taken into account. The two wavelets from Figure 4.8 are used for performing 32
simulations, where the horizontal spacing between two simulations amounts 0.2 mm.

0 1 2 3 4 5 6 0 1 2 3 4 5 6
0 ‘_T T T T T T — mm 0 _~y T T T T 1 T mim
14 14+
24 24
3 { 34
mm mm
i
(a) configuration (b) configuration
offset [mm] offset {[mm)
1 2 3 4 5 6 1 2 3 4 5 6
0 0 | 1 | 1 i |
0) 3
E i g
(c) Response with wavelet (a) (d) Response with wavelet (b)
Fig. 4.9 Simulated reflection measurements on an aluminium disk with a variable thick-
ness using the two wavelets of Figure 4.8.

For both situations, the reflection coefficient and the traveltime in water are obtained
using a 12 point sinc peak-detection method. The results are shown in Figure 4.10. ‘

varies stepwise. T'his is a requirement, since the forward model assumes that the incident wavefield
has to propagate perpendicular to the interface orientation.
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Fig. 4.10 Egtracted reflection coefficients and traveltimes from simulated responses on
aluminium disks with variable thickness (see Figure 4.9).

It is clear that using wavelet (b), better results will be obtained for thin layers. The
difference between the two wavelets is that the energy in wavelet (a) is concentrated
at the end of the wavelet, while wavelet (b) has its energy in the beginning. Although
the position of the maximum is not only dependent on the energy distribution in
the wavelet, it is clear that the more the energy is concentrated in the beginning of

52
offset [mm] offset [mm]
|

the wavelet, the more likely the maximum value will occur in the beginning too.
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minimum phase wavelets

According to Yilmaz (1987), a wavelet with a given amplitude spectrum is called a
minimum phase wavelet if its energy is maximally concentrated at its onset. The
concept of minimum phase wavelets is studied in the Laplace-domain by Claerbout
(1976) and by Berkhout (1973) in the Fourier-domain. There are different ways to
transform a wavelet into a minimum phase wavelet. One method is the Whittle’s
Exp-Log method (Claerbout, 1976), which can be easily transformed into an algo-
rithm. The filter T'(w)® that is used for transforming a wavelet into its minimum
phase equivalent has to be applied to the reflection measurement where the consid-
ered wavelet serves as a source signal. The transformation from the wavelet S(w)
into the minimum phase wavelet S™*(w) is given by

S™in () = T(w)S(w). (4.16)

The measured pressure in a reflection measurement, according to Equation (2.162)
and given a minimum phase wavelet S™"(w), is given by

PMIn(4) = X ()™ (w) (4.17)
and thus

P™iM(y) = T(w)P(w). (4.18)

The preprocessing procedures mentioned in the beginning of this chapter can thus
be applied to the transformed signal P™®(w), when use is made of the minimum
phase wavelet S™i"(w).

4.4 Inversion algorithm

An algorithm for the detection of the traveltimes ¢; of the different layers and the
reflection coefficients R; of the different interfaces based on recursive inversion can
now be given by

determine the minimum phase equivalent of the source signal
call the sampled reflection signal pd
apply minimum phase deconvolution of signal pj
for i from 0 to n
begin
use a peak-detection method to estimate R; and t; from the signal in p?
calculate frequency domain counterpart PP (w) from pd(t)
for jfrom 0 to m

8 A discussion of T(w) is beyond the scope of this thesis.
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begin
calculate Wi(w;) based on t;
use Equation (4.8) to calculate P;iy(w;) which means:
- subtract the primary reflection
- correct for transmission effects
- correct for propagation effects
use Equation (4.9) to calculate PP, (w;) which means:
- remove the multiples related to interface ¢
end
calculate time counterpart pl, , (t) from PY,(w)
end

In this algorithm, n is the number of layers in the configurations and m is the number
of frequencies in one measurement.

Based on this algorithm, a flow chart is constructed and given in Figure 4.11.

4.5 Inversion on simulated data

In this section, the Recursive Direct Inversion (RDI) algorithm developed in Sec-
tion 4.4 will be tested on simulated measurements. The simulations are obtained
using the forward algorithm developed in Section 2.5.

Since the Recursive Direct Inversion algorithm is a mathematical and unique inver-
sion of the forward algorithm, the parameters obtained by the inversion algorithm
should match the parameters used in the forward model, provided that all calcula-
tions are performed without introducing errors.

Obviously, this is not the case. First of all, there are computational errors due to
rounding errors. Also, the result of a simulation is not a continuous signal, but a
discretization of a signal. As a consequence, there will be discretization errors in
the result. By using techniques as cubic interpolation or sinc interpolation for the
detection of the peak, the effect of discretization is diminished, but it can not be
completely eliminated.

Further, the recursive nature of the inversion process — where the effects of one
layer at the same time — is disturbed when primary arrivals interfere with later
arrivals. The minimum-phase transformation of the source signal is used to reduce
this effect.

Errors will propagate through the algorithm. As a consequence, the material param-
eters of the bottom layer will be obtained with less accuracy than the parameters

of the top layer. This is an important issuc one has to consider in order to choose a
suited inversion method.
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Fig. 4.11 Flow chart for the proposed inversion algorithm based on recursively obtaining
the information about one layer.
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The Recursive Direct Inversion algorithm is first tested against simulations, in order
to check the theoretical possibilities of the algorithm. Computational and discretiza-
tion errors are also present in real measurements — among other types of errors —
and this section therefore gives an example of the upper limit of the accuracy of the
Recursive Direct Inversion algorithm.

4.5.1 Aluminium layer

In chapter 2, a simulated example of a reflection measurement on a homogeneous
aluminium layer was shown. A similar configuration is repeated in Table 4.3. °

Aluminium layer in water
Layer | material | Az(mm) | p (—rkn% c (%) R t (s)
0 water 0.1 1000 1480 | 0.842 | 6.756 x 1078
1 aluminium 0.5 2740 6300 | -0.842 | 7.936 x 1078
2 water 00 1000 1480 - -

Table 4.3 Material properties for an aluminium disk embedded in water.

The source signal that is used for this simulation — emitted by a 15MHz focussed
transducer — is discussed in chapter 3. The source signal and the simulated acous-
tic responsc of the configuration are shown respectively in Figure 4.12(a) and Fig-
ure 4.12(b).
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time [us] time [us]
(a) source signal used in the simulation (b) simulated trace for a reflection

measurcment on aluminium

Fig. 4.12 Simulation of the acoustic reflection response of an aluminium disk embedded
m water.

Before applying the Recursive Direct Inversion Algorithm, the source signal is trans-

9In practice, the water layer will be much thicker, since the target material has to be located in
the focus zone of the transducer.
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formed into its minimum-phase equivalent. The filter that is responsible for this
transformation is then applied to the aluminium layer response, and the results are
given in Figure 4.13.
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time [us] time [us]
(a) source signal after minimum phase trans- (b) response of the aluminium layer
formation after minimum phase transforma-
tion

Fig. 4.13 Source signal and reflection response of the aluminium layer after minimum-
phase transformation.

The first step of the Recursive Direct Inversion algorithm is to estimate the travel-
time ¢y in layer 0 — the water layer — and the reflection coefficient between layer 0
and layer 1 — the interface between water and aluminium. The obtained values,
together with the "true” values, are given in Table 4.4.

Based on the estimated value of #;, the propagation factor Wy can be obtained.
Since water is assumed to be an instantaneously reacting medium, Equation (2.79)
can be used for this.

After the calculation of the propagation factor, the acoustic pressure P;(w) and its
time counterpart p; (¢) can be calculated. The physical meaning of p; (t) represents
the upgoing pressure that would be obtained if the top water layer was removed, and
the transducer is positioned at the top of the aluminium layer. The calculation of p;
based on pd therefore eliminates the effect of layer 0. The result of this elimination
step is given in Figure 4.14(a).

The next step is to remove the multiple reflections related to the surface of the
aluminium layer. This results in p}(¢), which should be equivalent to the pressure
that is measured when a transducer at the top of the aluminium layer only measures
the upgoing wavefield, assuming no energy is reflected from the top of the layer back
into the material. The resulting signal is given in Figure 4.14(b).

From this result, it is possible to determine the traveltime in the aluminium layer,
and the reflection coefficient at the bottom interface of this layer. The results can
be found in Table 4.4.
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for the water-aluminium interface minium layer

Fig. 4.14 RDI algorithm applied to a simulated reflection measurement of an aluminium
layer.

Material parameters in aluminium layer configuration
Layer | exact R | calculated R exact t[s] | calculated t[s]
0 0.842 0.844 6.76 x 107% | 6.76 x 10°®
1 -0.842 -0.851 7.94x107% | 7.94x 1078

Table 4.4 Comparison between the material parameters used in the simulation and the
parameters obtained by the Recursive Direct Inversion algorithm.

It appears that the traveltimes are obtained with a high accuracy. The reflection
coefficients are also obtained with a good accuracy, but it can already be noticed that
the reflection coeflicients of lower interfaces — in this case Ry — are less accurate
than the reflection coeflicients of the upper interfaces. The latter is a consequence
of the error propagation.

4.5.2 Glare

As stated in the introduction of this section, it is expected that the quality of the
result of the inversion decreases with increasing number of layers in the configuration.
This will be tested in this subsection, by comparing the results of two different Glare-
configurations, with respectively 3 and 5 layers.

The structural difference between Glare and aluminium is not only the number of
layers, but also the presence of a medium with relaxation — prepreg — in Glare. In
the following simulations, it is assumed that prepreg has an attenuation coefficient
v, = 1000 m~!, and the coefficients of frictional force K and bulk inviscidness T’
have equal contributions to this attenuation coefficient — see Equation (2.123). In
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the inversion, it will be assumed that 7, is known.

Glare 2/1

The first configuration consists of three layers, and the material parameters are
described in Table 4.5. The Glare 2/1 geometrical configuration is illustrated in

Glare 2/1 material embedded in water
Layer | material | Az(mm) | p( ﬁ% e(2) | 7w(x)
0 water 0.1 1000 | 1480 0
1 aluminium 04 2740 | 6300 0
2 prepreg 0.250 1600 | 3100 | 1000
3 aluminium 0.4 2740 | 6300 0
4 water 00 1000 | 1480 0

Table 4.5 Material parameters of a Glare 2/1 sample.

Figure 4.15(a). First, the source signal used to perform the simulation is emitted by a
15MHz focussed transducer. The result of this simulation is shown in Figure 4.15(b)

First, the source signal is transformed into its minimum phase wavelet, and the
same transformation is applied to the reflection measurement. The result is given
in Figure 4.16.

Since the configuration consists of three solid layers, three recursion steps are needed
in order to obtain the acoustic parameters of the whole configuration. One elimi-
nation step removes the effect of the top-most layer. After the elimination of the
first layer, the resulting signal has to be the same as the result of a simulation on
a configuration of two layers. In Figures 4.17, 4.18 and 4.19 the elimination of the
primary arrival and the multiples and the simulated trace are shown.

The true values are compared with the parameters obtained by the Recursive Direct
Inversion algorithm, and given in Table 4.6.

The result of the Recursive Direct Inversion algorithm is a number of traveltime-
reflection coefficients pairs. However, one is often interested in the acoustic impedance
as a function of depth.

The traveltime-reflection pairs can be converted into a series of depth-impedance
pairs, using Equations (4.1) and (4.2)'°. In Figure 4.20(a), the acoustic impedance
of the material is plotted as a function of the depth into the material, based on

101t is also possible to convert the traveltime-reflection pairs into depth-density pairs, provided
that the velocities in the different layers are known. This is a fair assumption when well known
materials are used.
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Fig. 4.15 Simulation of a reflection measurement on a Glare 2/1 material embedded in
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Fig. 4.16 Source and reflection response of the Glare 2/1 sample after performing a
minimum-phase transformation.

the results given by the Recursive Direct Inversion algorithm. The parameters that
are used for obtaining the simulated response are shown in a similar plot in Fig-
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Material parameters in glare 2/1 configuration
Layer | exact R | calculated R exact t[s] | calculated ¢[s]
0 0.842 0.844 6.76 x 1078 | 6.77 x 10~®
1 -0.554 -0.564 6.35x 1078 | 6.36 x 1078
2 0.554 0.565 8.06 x 1078 | 8.07x 1078
3 -0.842 -0.869 6.35x 1078 | 6.37x 1078

Table 4.6 Comparison between the material parameters used in the simulation and the
parameters obtained by the Recursive Direct Inversion algorithm.
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(a) removal of primary (b) removal of multi- (c) simulated response
arrival ples

Fig. 4.17 Removal of the primary reflection, multiples and simulated response after elim-
ination of layer 1.

ure 4.20(b). For these figures, grey level plots are used since they can easily be
extended to the case where more simulations or measurements are performed on dif-
ferent positions, as will be shown later in this subsection. For clarity, the obtained
depth-impedance values are compared in a normal plot in Figure 4.20(c).

The obtained acoustic impedance are compared with the true values in Table 4.7,
and the relative error is indicated.

The RDI-algorithm can also be used to obtain the thickness of the layers — by
means of Equation (4.2), provided that the acoustic velocity is known.

Assuming that this is the case, Table 4.8 gives the thicknesses of the different layers,
as obtained by the RDI algorithm.
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Fig. 4.18 Removal of the primary reflection, multiples and simulated response after elim-
ination of layer 2.

amplitude amplitude amplitude
-1 0 1 —1 0 1 —1 0 1
0 t 0 | 0 J
L @ i
£ E £
= g i
24 24 2
3 — 3 3
(a) removal of primary (b) removal of multi- (¢) simulated response
arrival ples

Fig. 4.19 Removal of the primary reflection, multiples and simulated response after elim-
imation of layer 3.

From thesc tables, it can already be seen that the layer thickness is obtained with a
higher accuracy than the impedance of the different layers. Also, by comparing the
two aluminium layers, it follows that the obtained acoustic impedance of the bottom
aluminium layer is less accurate than the acoustic impedance of the top aluminium
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Fig. 4.20 Plot of the acoustic impedance as a function of depth for a simulated reflection
measiurement on a Glare 2/1 material. Dark colours mean a high impedance
value.

Obtained layer impedance in a glare 2/1 configuration

Layer exact Z;[10%kgm—2s7'] | calculated Z;[10°kgm 2s7'] | &(Z;)
0 (water) 1.48 1.48 0.00 %
1 (aluminium) 17.26 17.30 0.22 %
2 (prepreg) 4.96 4.95 0.06 %
3 (aluminium) 17.26 17.12 0.84 %

Table 4.7 Comparison between the acoustic impedance of the different layers used in the
simulation and the acoustic impedance obtained by the Recursive Direct Inver-
sion algorithm.

Obtained layer thickness in a glare 2/1 configuration
Layer exact Az;imm)] | calculated Az;[mm] | §(Az;)
0 (water) 0.1000 0.1000 0.00 %
1 (aluminium) 0.4000 0.3998 0.05 %
2 (prepreg) 0.2500 0.2499 0.04 %
3 (aluminium) 0.4000 0.3998 0.05 %

Table 4.8 Comparison between the layer thickness used in the simulation and the thick-
ness obtained by the Recursive Direct Inversion algorithm.

layer. However, there is an exccllent match between the true and the estimated
values, even for the specific acoustic impedance of the bottom-most layer.
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Glare 3/2

A more complex Glare configuration is the Glare 3/2 target, whose parameters are
shown in Table 4.9. It is assumed that the attenuation coefficient v, of the prepreg
layers is known (v, = 1000 m™1!).

Glare 3/2 sample embedded in water
Layer | material | Az(mm) | p(X&) [ ¢ (™) | %(%)

m3

0 water 0.1 1000 | 1480 0
1 aluminium 0.4 2740 | 6300 0
2 prepreg 0.250 1600 | 3100 1000
3 aluminium 0.4 2740 | 6300 0
2 prepreg 0.250 1600 | 3100 1000
3 aluminium 04 2740 | 6300 0
4 water 00 1000 1480 0

Table 4.9 Material parameters of a Glare 3/2 sample.

The simulated reflection response for this configuration - using the source signal
emitted by the 15 MHz focussed transducer discussed in Chapter 3 — is shown in
Figure 4.21(a).

The Recursive Direct Inversion algorithm is used step by step to eliminate the effects
of the different interfaces. After elimination of all but the bottom most interface,
the signal in Figure 4.21(b) is obtained.

Applying the Recursive Dircct Inversion algorithm on this simulated reflection mea-
surement results in a number of traveltime - reflection coefficient pairs.

The true values are compared with the parameters obtained by the Recursive Dircct
Inversion algorithm, and given in Table 4.10.

Material parameters in glare 3/2 configuration
Layer | exact R | calculated R || exact ¢[s] | calculated ¢[s]
0 0.842 0.842 6.76 x 1078 | 6.76 x 10~®
1 -0.554 -0.554 6.35x 1078 | 6.35 x 10~®
2 0.554 0.551 8.06 x 10~% | 8.07 x 10~®
3 -0.554 -0.552 6.35x 1078 | 6.33 x 1078
4 0.554 0.547 8.06 x 1078 | 8.08 x 10~®
5 -0.842 -0.829 6.35x 1078 | 6.32x 108

Table 4.10 Comparison between the material parameters used in the simulation and the
parameters obtained by the Recursive Direct Inversion algorithm.
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Fig. 4.21 Reflection response of a Glare 3/2 material and application of the RDI algo-
rithm.

After the conversion from the traveltime-reflection coeflicient pairs towards depth-
impedance pairs, Figure 4.22(a) is obtained. The image containing the true pa-
rameters is given in Figure 4.22(b), and the results are compared in a line plot in
Figure 4.22(c). The obtained values for the acoustic impedance of the different layers
are also given in Table 4.11.

If the acoustic velocity in the layers is known and the RDI algorithm is used to
obtain the thickness of the different layers, the values in Table 4.12 are found. From
the results in these tables, it is clear that the deeper the layer, the less accurate
the parameters are obtained. The results are still very good, though, even for the
deeper layers.

Glare 3/2 with delamination

One of the goals of ultrasonic inspection of laminated materials is to check the quality
of the bonds between the layers. The Recursive Direct Inversion Algorithm is able
to detect a void inclusion between two layers, due to the extreme low impedance of
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Fig. 4.22 Plot of the acoustic impedance as a function of depth for a simulated reflection
measurement on a Glare 8/2 material. Dark colours mean a high impedance
value.

Obtained layer impedance in a glare 3/2 configuration
Layer exact Z;[kgm~2s7!] | calculated Z;[kgm=2s71] | &(Z;)
0 (water) 1.48 1.48 0.00 %
1 (aluminium) 17.62 17.30 022 %
2 (prepreg) 4.96 4.96 0.06 %
3 (aluminium) 17.62 17.14 0.69 %
4 (prepreg) 4.96 4.94 0.44 %
5 (aluminium) 17.62 15.80 237 %

Table 4.11 Comparison between the acoustic tmpedance of the different layers used in
the simulation and the acoustic impedance obtained by the Recursive Direct
Inversion algorithm.

air and vacuum.

In Figure 4.23, a Glare 3/2 matcrial with a delamination between layer 2 and layer
3 is shown. It is assumed that several measurements are performed on the material,
the transducer is translated over a fixed step-size, 0.1 mm in the z-direction between
two measurements. The delamination shows up between measurement points 128
and 192, and thus starts at a horizontal offset of 12.8 mm. Two simulated reflection
measurement of this material are compared with each other in Figure 4.24: the first
measurement is done outside the delamination area, while the second measurement
is done inside this area.



122 Recursive Direct Inversion

Obtained layer thickness in a glare 3/2 configuration
Layer exact Az;[mm] | calculated Az;[mm] | 6(Az;)
0 (water) 0.1000 0.1000 0.00 %
1 (aluminium) 0.4000 0.3997 0.07 %
2 (prepreg) 0.2500 0.2501 0.04 % ‘
3 (aluminium) 0.4000 0.3987 0.32 % |
4 (prepreg) 0.2500 0.2504 0.16 %
5 (aluminium) 0.4000 0.3983 0.42 %

Table 4.12 Comparison between the layer thickness used in the simulation and the thick-
ness obtained by the Recursive Direct Inversion algorithm.
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Fig. 4.23 Glare 3/2 material with a delamination between layer 2 and layer 3.

Combining the 256 one-dimensional simulations results in a line-scan. On each
simulated reflection response, the Recursive Direct Inversion algorithm is applied.
This leads to a number of traveltime-reflection coefficient pairs for each simulation.
All these pairs are converted towards depth-impedance pairs. The result is shown
in a grey level plot in Figure 4.25.

It can be clearly observed that the algorithm detects a layer with a very low impedance
under layer 2 in the delamination area. Due to the high contrast in impedance, al-
most all the energy at the interface between layer 2 and layer 3 will be reflected. As
a consequence, no information about deeper layers is obtained.
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Fig. 4.24 Simulation of a reflection measurement on a Glare 3/2 material with a delam-
ination between layer 2 and layer 3.
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Fig. 4.25 Results of depth-impedance inversion on a Glare 3/2 material with a delami-
nation.
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4.6 Inversion on measured data

The simulations in the previous section give an indication about the stability of the
direct inversion process. It was shown that the acoustic parameters of the different
layers can be detected rather accurate, and the quality of the inversion decreases
with the number of layers in the material.

In this section, the Recursive Direct Inversion algorithm is applied to real measure-
ments. In Chapter 3, several reasons arc given why there are differences between
real data and data obtained by simulations. In order to minimise these differences,
two things can be done:

e all physical phenomena that occur when a wave travels through a material
have to be incorporated in the developed model — and as a consequence also
in the inverse model;

e the data have to be obtained with a high accuracy.

4.6.1 Aluminium layer

In Figure 4.26, the source signal and the reflection measurement on an aluminium
disk of approximately 0.8 mm are shown. The signals are obtained after perform-
ing a minimum-phase transformation on the source signal, and applying the same
transformation on the reflection measurement, as described in Subsection 3.5.1.
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Fig. 4.26 Source and reflection measurement on an aluminium disk embedded in water,
after a minimum-phase transformation has been applied

In Figure 4.27, the application of the Recursive Direct Inversion is shown. In the
first step — Figure 4.27(b) —— the primary arrival due to a reflection at the boundary
between the water layer and the aluminium layer is removed. Based on the ampli-
tude of this first arrival, the reflection coefficient between the water layer and the
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aluminium layer is estimated. In Figure 4.27(c), the internal multiples in the alu-
minium layer are removed. The only event that is still present, is the reflection duc
to an acoustic contrast between the aluminium layer and the water layer beneath it.
Based on the elapsed time before this event shows up in the signal, the traveltime in
the aluminium layer can be calculated. Also, the strength of this arrival can be used
to calculate the reflection coeflicient between the aluminium layer and the water
layer beneath it.
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Fig. 4.27 Removal of the first primary reflection and the internal multiples in a mea-
surement on an aluminium disk.

The obtained traveltimes and reflection cocflicients are given in Table 4.13

Material parameters in aluminium layer configuration
Laycr | calculated R calculated t[s]

0 0.851 6.76 x 1078

1 -0.782 1.22 x 1077

Table 4.13 Material parameters of an aluminium configuration embedded in water, as
obtained by the Recursive Direct Inversion algorithm.

It appears that the traveltimes are obtained with a high accuracy. The obtained
reflection coefficient is less accurate, but still gives an excellent indication of the
specific acoustic impedance of the material under the aluminium layer, which is in
this case water.
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4.6.2 Glare 2/1

The ultimate goal is the inspection of laminated materials. Therefore, the Recursive
Direct Inversion algorithm is applied on reflection measurements on the Glare 2/1
sample that was also discussed in the previous section. The material parameters as
supplied by the manufacturer are given in Table 4.5. Applying the RDI algorithm
results in the list of traveltime- reflection coefficients pairs given in Table 4.14.

Material parameters of a Glare 2/1 configuration
Layer | calculated R calculated ¢[s]

0 0.825 6.76 x 10~8

1 -0.454 5.85 x 10~#

2 0.421 8.30 x 1077

3 -0.606 5.92 x 10~®

Table 4.14 Material parameters of a Glare 2/1 configuration embedded in water, as ob-
tained by the Recursive Direct Inversion algorithm.

After the conversion from the reflection coefticients towards the acoustic impedances,
a list of depth-impedance pairs is obtained. The depth-impedance plot obtained
by the algorithm is compared with the expected depth-impedance parameters in
Figure 4.28. The obtained acoustic impedances are compared with the expected
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Fig. 4.28 Depth-impedance plot for a reflection measurement on a Glare 2/1 material.
Dark colours mean a high acoustic impedance.

values in Table 4.15 and the relative difference is indicated. As can be seen from the
table and the figures, the RDI algorithm is capable of determining the different layers
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Obtained specific acoustic impedances for a glare 2/1 configuration
Layer expected Z;[kgm™2s7'] | calculated Z;[kgm~2s7!] | §(Z;)
0 (water) 1.48 1000 0.00 %
1 (aluminium) 17.26 15.46 10 %
2 (prepreg) 4.96 5.80 17 %
3 (aluminium) 17.26 14.24 17 %

Table 4.15 Comparison between the ezpected acoustic impedance and the acoustic
impedance obtained by the Recursive Direct Inversion algorithm applied on
real measurements on Glare 2/1.

in the material, and there is a good match between the obtained and the expected
specific acoustic impedances. Differences between the obtained and expected values
may be due to both shortcomings in the theory and the algorithm as well as to
erroneous values given by the manufacturer of the Glare sample.

If it is assumed that the acoustic velocity in the different layers is known, the RDI
algorithm can be used to estimate the layer thickness. The result is given in Ta-
ble 4.16.

Obtained layer thickness in a glare 2/1 configuration
Layer expected Az;[mm)] | calculated Az;{mm] | §(Az;)
0 (water) 0.1000 0.1000 0.00 %
1 (aluminium) 0.4000 0.369 7.75 %
2 (prepreg) 0.2500 0.257 2.8 %
3 (aluminium) 0.4000 0.373 6.75 %

Table 4.16 Comparison between the erpected layer thickness and the thickness obtained
by the Recursive Direct Inversion algorithm applied on real measurements on

Glare 2/1.

It appears that the thickness is obtained with a higher accuracy than the acoustic
impedance. Although the difference between the expected acoustic impedance and
the obtained acoustic impedance is rather large for the bottom aluminium layer, the
algorithm should be able to detect possible delaminations. The impedance contrast
between aluminium and void or air is indeed several orders of magnitude larger than
the difference between the expected impedance of the bottom layer and the measured
impedance.
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Chapter 5

lterative Parametric Optimisation

In this chapter, an alternative method for the Recursive Direct Inversion method
developed in Chapter 4 is presented. The method described here is based on para-
metric optimisation. Unlike the specific method described in Chapter 4, parametric
optimisation is a very general procedure applied in many disciplines. The knowledge
of the specific problem is used in order to develop a method which is optimally suited
for the particular problem of this research.

5.1 Theory of parametric optimisation

In Chapter 4, the acoustic parameters of the layers that constitute the target mate-
rial are obtained by a direct inverse procedure. This is done by recursively applying
operations that are the inverse of the operations used in the forward algorithm.
The errors introduced in each step propagate through the next steps. As a conse-
quence, the acoustic parameters of the bottom layers — the last layers to be handled
— will be obtained with less accuracy than those of the top layers.

In this chapter, another method for retrieving the acoustic parameters is presented.
In this method, the set of parameters plays the central role. Starting from an initial
(estimated) set of acoustic parameters, the forward algorithm -— see Chapter 2 —
is used to predict the resulting wavefield. A comparison between this predicted
wavefield and the measured wavefield can then be used in order to correct the initial
set of parameters and to obtain a better one. This procedure is repeated until the
predicted wavefield "matches” the measured wavefield.



130 Iterative Parametric Optimisation

5.1.1 Description of the optimisation problem

A measured quantity — or a series of quantities — y can be considered as the result
of an operator £ acting on a set of parameters u*:

y = L{u"}. (5.1)

In the present research, the measured quantities are the elements of a time-series
of pressure-related values, measured at a well-defined point in a medium. Actually,
the pressure at a specified point is a continuous function of time, y(t), and y is a
time-sampled version of y(t):

Yo

Yn—1
with n the number of sample points.

The operator £ describes the total action of a wave travelling from the transducer —
located at the considered point — towards a material, interacting with the material,
and travelling back towards the transducer. This action can be described using the
wave theory as described in Chapter 2.

The set of parameters u* this operator acts on is determined by the geometrical
and material properties of the constituting layers. In the inverse problem, these
parameters are the unknown constants that cause the operator to yield the measured
series of quantities. A different set of parameters will give a different set of measured
quantities.

The goal of this chapter is to find the set of parameters that, when the operator acts
upon it, gives the series of quantities that optimally matches the measured series of
quantities. After the operator £ is applied to a set of parameters u, a series p is
obtained:

p = L{u}, (5.3)
with
Po
p=| " (5.4)
n—1

Different criteria can be used in order to determine when two series match each
other. In order to be able to distinguish between the quality of two approaches, the
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matching needs to be associated with a numerical value. In general, the quality of
matching is described by an error function e(u). The lower the value of this function,
the better the matching.

Finding a minimum for the function e(u) is done by an optimisation procedure.
Since the value for e(u) is dependent on a set of parameters, the problem is denoted
as a parametric optimisation problem.

A function that is often used to associate a value with a set of parameters, is the
(weighted) quadratic error function.
The weighted quadratic error function is defined as

n—1
e(u) = —;— Z wi(p; — i) (5.5)
=0

When all weight quantities w; are equal to 1, Equation (5.5) is simply called the
quadratic error function.
If the residue function r(t;u) is defined as

r(t;u) = y(t) — L{u}, (5.6)

the weighted quadratic error function is in matrix notation written as
L ¢
e(u) = oF (w)yWr(u), (5.7)

where r(u) is the time-sampled counterpart of the residue function r(¢,u) and W is a
diagonal matrix whose elements are the weight quantities: W = diag(wo, w1, ..., wn_1).
When the weight quantities are all equal to 1, the quadratic error function becomes

c(w) = SlIr(w)”. (5.8)

The vector @t minimising e(u) provides the set of parameters that best matches the
set of real parameters u*, using the above-mentioned crror criterion.

Different methods exists for finding the minimum of a multivariate smooth function.
These methods are extensively described in the literature — e.g. Gill et al. (1981),
Tarantola (1987). It is advantageous to choose and adapt a method that suits

the needs for a particular problem. In this section, two general methods will be
described.

The first method is a very general optimisation method based on the steepest-descent
method. The second approach makes use of the properties of the least squares target
function.
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5.1.2 Steepest descent method

A general iterative method for finding a set of parameters u that minimises the
target function e(u) is described by the following iterative algorithm:

let u* be a vector containing the current estimated parameters

compute a non-zero vector q* and a scalar o* for which it holds that e(u® —a*q*) <
k

e(u”)

the new estimated parameter set u is given by u**t! = u

repeat these steps until the stop criterion — see subsection 5.1.4 — is satisfied.

k+1 k

_ aqu

The algorithm is initiated by defining u® to be the set of initial parameters. This
initial set can be based on a-priori information. In general, the better the initial
vector approaches the exact minimum of e(u), the fewer steps will be required before
the stop criterion is satisfied.

The procedure can be iteratively repeated and the resulting series u® ul,... will
converge towards u* provided that the start point u® is located close to the global
minimum and not close to a local minimum.

This algorithm requires two important decisions in each step:
e choose a vector q¥;
b lar o
e choose a scalar a”.

The choice of ¢*

In order to allow convergence of the series u*, u*+1 ... the vector q* has to be
chosen in a way that at least for some o it holds that

e(u® — ofqf) < e(u®). (5.9)
The new parameter vector uf*! is then defined as
uttt = u* — of gk, (5.10)

It is common to take the gradient of €(u) evaluated at the point u* — denoted
by Ve(u*) — to be the search direction q*. A discussion of this can be found in
the literature - e.g. Gill et al. (1981), Tarantola (1987) and Golub and Van Loan
(1989). Intuitively this can be understood by considering that —Ve(u*) points it
the direction where the error decreases the fastest.
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The gradient Ve(u)is calculated as

De_
bul
Buz
Ve(u) = . (5.11)

e
OUm

In the case no analytical expression for Ve(u) is known, a numerical approximation
for this gradient has to be used. The forward difference approximation is given by

Oe(U1, U2y wvey Uiy ey Upy) - €(ur, Uy, ooy Ui + A o Uy) — €(U1, Uy ey Uiy vy Uy

c')ui - A

(5.12)

In this calculation, A has to be chosen sufficiently small since by definition, the
gradient is obtained by letting A approach zero. On the other hand, when A is too
small, computational errors might be introduced.

A better approximation for the partial derivatives is obtained by using central dif-
ferences:

A , A
Oe(uy, U, ooy Uy ooy Uy N e(ur,us, ..., u; + R ooy Umn) — €(U1, Uy ey Uy — Z,.

6ui A

-~>u7n)

(5.13)

The drawback in using central differences is that for the calculation of the whole
gradient, 2m evaluations of e(u) are required, while by using forward differences the
gradient is obtained after m + 1 evaluations.

The choice of o*

Once the direction of search has been chosen, it is assumed that at least for one
value of of Equation (5.9) is satisfied. Finding the value of o that minimises
e(u* — aFq*) then basically is an univariate minimisation problem. Methods for
detecting the minimum of an univariate function can be found in the literature —
e.g. Gill et al. (1981). In this case, however, it is not necessary to find the best value
of a*. In general, the more o* minimises the left-hand side of Equation (5.9), the
fewer iteration steps are needed before the stop criterion will be reached. However,
the computations necessary to calculate this best value might not outweigh the gain
obtained by the fewer iteration steps.

The error function can be calculated for different values of o, and the value that
results in the lowest value for the error function can be taken to be af. This means
that a lot of function evaluations are necessary, however.
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It is also possible to calculate the error function for a few values of o, and then
using a polynomial interpolation in order to obtain the minimum value. If n de-
notes the number of evaluations, taken at distinct values, there exists exactly one
n — 1-th degree polynomial that gives the exact values in the considered evaluation
points. The coefficients of this polynomial can easily be calculated, by solving the
Vandermonde System

VTa=f, (5.14)

where a is the vector containing the polynomial coefficients and f is the vector con-
taining the function evaluations. Further, V is the Vandermonde matrix V(zo, ..., Z,,)
— see Golub and Van Loan (1989). Assuming that the error function is smooth in
the vicinity of the minimum — which is, as will be shown later, a fairly reasonable
assumption in the specific problem of this research — this minimum can be approx-
imated by using a second-order polynomial. A second-order polynomial has one
minimum, and is uniquely defined when three of its (index, value) pairs are known.
The value of the error function in the considered point is known. Two other values
are needed in order to describe the polynomial.

Normalisation of the parameter space

Since u*t1, the update of the parameter-vector u* will be located on a line starting
from the current vector u* and with direction Ve(u*), it is advantageous that the
solution u* is located on this line. Since the gradient of a function is perpendicular to
the tangential plane in the considered point, this means that the shape of the contour
of constant € needs to be an m-th dimensional hyper-sphere. This means that if a
vector u® is located a fixed distance A away from u*, the error function e(u) is not
dependent on the direction in which the vector has been moved. This is probably
not the case for the chosen set of parameters in u. Therefore, a transformation will
be performed from the physical parameters in u towards a new set of parameters v
that have contour-lines in the shape of a hyper-sphere in the vicinity of v*:

v = Fu, (5.15)

where F is a linear transformation. The physical set of parameters in u is obtained
from v using the inverse transformation:

u=F"lv. (5.16)

As a consequence of the transformation, the row v%, v!, ... will converge faster to

v* than the row u®, u?, ... converges to u*. The row is obtained using the iterative
relation

Vil = vE _ ok ve(vh). (5.17)
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From Equations (5.3) and (5.5), it follows that the error function is written as

1 ‘
e(u) = 5lly — L{u}|*. (5.18)
Using Equation (5.16) this becomes
1
o(v) = 5lly = L{F v}l (5.19)

In the case where cach transformed parameter is only dependent on one original
parameter, the transformation operator F can be written as follows:

v=Du+g, (5.20)

where D is a diagonal matrix D = diag(dy, ds, ...,dm,) and t is a translation vector.
Further, since

Oe Oe Ou;
o . B0, (5.21)
it holds that
Ve(v) = D71 Ve(u). (5.22)

As a consequence, it follows from Equations (5.17), (5.20) and (5.22) that an im-
proved estimate of the set of parameters is given by

uftl = u* — FD2Ve(ub). (5.23)

5.1.3 Gauss-Newton Method

The method of the steepest descent as described in the previous subsection is very
general and does not use the knowledge that the target function is the result of a
least-squares problem. The second order Taylor expansion of the target function
around u is given by
1 . '
e(u’ +q") = e(u") + VTe(uh)q* + 5(a")TVe(uh)d, (5.24)
with an ecrror of order ||q*(|°.

The vector g that minimises expression (5.24) is obtained as the solution of the
linear system

VZe(ub)q* = —Ve(ub). (5.25)
Using Equation (5.8), it follows that

Ve(u*) = JT (u*)r(u*) (5.26)
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and
m—1
Vie(ut) = I ()T (") + 3 ri(w)Hi(w), (5.27)
i=0
where J(u) is the Jacobian matrix of r(u) and is defined as
Org Org Org
Ju, U ) dum
or ory ory
Ju)=| 9w Bum (5.28)
Orn_1  Orn_y Orn_1
Ouq ug OUm
and H; is the Hessian matrix of r;(u) and is defined as
827'i 827‘1‘ 62T‘i
duf duydus Ou10Uum
8%r; 8r; 8%r;
H, = Buzduy Su2 Oug0Um (529)
621',' 827‘i 627','
Oumdur  Oumduz du2,

If u* is located close to the minimum u*, the residues r; will be small. As a conse-
quence, the second term in Equation (5.27) will be small too, for reasonable values
in the Jacobian and Hessian matrices.

Using Equations (5.26) and (5.27) together with this approximation in Equation (5.25),

it follows that
IT (W IW*)q* = -3 (u*)r*. (5.30)

The vector g that solves this equation, is the solution of the linear least-squares
problem

1
S )" + x¥ . (531)

Different methods exist for solving linear least-square problems. One method exists
in the QR factorisation. If the orthogonal matrix Q™ ™ and the non-singular
upper-triangular matrix R"*" compose the QR factorisation of J(u*)

QJIF = m , (5.32)

then g* is obtained as the solution of the linear system
Rq* = -Q,r*, (5.33)
where it holds that
anm
Q= [ (ml—n)xm : (534)

2
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5.1.4 Stop criterion

The goal of the iterative improvement is to obtain a series of vectors u where the
corresponding series of errors e(u) converges towards 0. Since it is in general impos-
sible to reach this limit — i.e., due to computational errors — a stop criterion has
to be defined. It is common to stop the iteration once the error e(u) is lower than
a predefined value:

e(u) < €™, (5.35)

This criterion itself only gives a boundary for the global error, and not for the errors
on the different parameters. Therefore, it makes sense to relate the choice of €™ to
the errors on the physical parameters.

A vector Al'™u is defined with each of the components representing the maximum
allowed absolute error for the corresponding parameter in u. A series of m error
values is constructed by calculating the error resulting from a series of paramecters
ul'm™ Each u'™ is equal to the exact set u*, except for its sth component, which
is given by

limyi _ = lim
u; =g+ A (5.36)

This corresponding error value is denoted by €™ Taking
€™ = min, { ™1} (5.37)

it is cnsured that the error on the different components will never exceed the maxi-
mum allowed error, provided that the parameters are independent from each other.
Generally, this is not the case, however, and the above-derived criterion has to be
used with care.

Another reason for stopping the iterations, is the stagnation of the error value. Duc
to noisy data, computational errors, an imperfect forward model etc. it is unlikely
that the error function can become as small as desired.

5.1.5 The choice of parameters

The iterative procedures described in the following sections result in the improve-
ment of a set of parameters that are responsible for the result obtained by measure-
ments. Physically, the traveltime in each laycr and the reflection coefficients at the
boundaries between two layers determine the response of the material. Therefore,
it makes sense to choose the traveltime in cach layer and the reflection coefficient
at cach boundary to be the parameters. In a configuration with m/2 layers, this
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results in a set of m parameters. The vector u is composed as

B to ]
Ry

u= Rl 5 (538)

with t; the traveltime in layer ¢ and R; the reflection coefficient at the boundary
between layer ¢ and layer i + 1.

The result of the iterative procedure is a set of values for the traveltime and the
reflection coefficients of the different layers. From these parameters, other values
— material parameters — can be calculated, using Equations (4.1), (4.2), (4.3) and
(4.4).

5.2 Optimisation on simulated data

Some of the benefits of applying an inversion algorithm on simulations are already
mentioned in Section 4.5. Besides, in the case of a parametric optimisation, simula-
tions can provide information about the quality of different optimisation algorithms.

5.2.1 Aluminium layer

In a first case, the simulated acoustic reflection response of a homogeneous alu-
minium layer embedded in water is studied. The water under the aluminium is
considered to be a half-space, so the energy that transmits from the aluminium
down into the water, will never be reflected back. The material parameters of the
configuration are specified in Table 5.1.

Aluminium layer in water
Layer | material | Az(mm) | p (;E%;) c (%) R t (s)
0 water 0.1 1000 1480 | 0.842 | 6.7561078
1 aluminium 0.5 2740 6300 | -0.842 | 7.93610~%
2 water 00 1000 1480 - -

Table 5.1 Material properties for an aluminium disk embedded in water.

The source signal used in the simulations in this section is a real measured signal,
obtained with a 15-MHz transducer with a focus point at 76.2 mm. The time-signal
of this source signal is shown in Figure 5.1(a).
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Fig. 5.1 Source signal and simulation of the acoustic reflection response of an aluminium
disk embedded in water.

Using the forward model as explained in Chapter 2, the scattered reflected wavefield
at the transducer can be calculated. The result is shown in Figure 5.1(b).

Changing the acoustic parameters of the aluminium layer will give a different result.
In Table 5.2, a slightly different configuration than the one in Table 5.1 is given, in
which the aluminium disk is 0.02 mm thicker.

Aluminium layer in water
Layer | material | Az(mm) | p (%% c () R t (s)
0 water 0.1 1000 1480 | 0.815 | 6.7561078
1 aluminium 0.52 2300 6300 | -0.815 | 8.25410~8
2 water 00 1000 1480 - -

Table 5.2 Perturbed material properties for an aluminium disk embedded in water.

The corresponding acoustic responses of these configurations are compared with each
other in Figure 5.2.

In the following, it is assumed that the material parameters in Table 5.1 provide
the ”true” set of parameters. The parameters in Table 5.2 on the other hand are
the "estimated” set, and they will be used as the initial set for the optimisation
routines'. Note that in this case, Figure 5.2(b) is the residue function r(t), according
to Equation (5.6).

Equation (5.8) can be used to calculate the error for cach configuration. Using the

11t has to be mentioned that the algorithm will only optimise R; and ¢;. The other parameters
follow from the obtained R; and t;, using some a-priori information.
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Fig. 5.2  Simulated reflection measurement on an alumintum layer embedded in water for
two sets of material parameters.

configuration of Table 5.2, an error of 0.225 is obtained.

By varying the traveltimes in the water layer and the aluminium layer and the
reflection coefficients at the interfaces of the aluminium layer, contour plots of the
error function are obtained.

Without scaling the parameters, the error as a function of the traveltime in the
aluminium layer and the reflection coefficient between the aluminium layer and the
water beneath it, is given in the contour plot of Figure 5.3(a). It is clear that the
error function is much more sensitive to changes in the traveltime than to changes
of the same magnitude in the reflection coefficient.

Normalisation of the parameters can lead to more circular contour plots. According
to Gill et al. (1981), the first basic rule of scaling is that the variables of the scaled
problem should be of similar magnitude and of order unity in the region of interest.
Therefore, each of the parameters is transformed using Equation (5.20), where

di = u.—lj (539)
where u; is the initial value of parameter ;. This leads to the scaled window in

Figure 5.3(b). Still, the influence of one parameter - the traveltime — outweighs
the influence of the other parameter - the reflection coefficient.
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Fig. 5.3 Contour plot of the error function for different values of the traveltitne in the
aluminium layer t1 and the reflection coefficient between aluminium and water
R;:.

In Figure 5.4(a), the range for the parameters is manually varied until the contour
lines are rather circular. Each parameter is then situated at wPi® < u; < uP*. A
transformation from the old set of parameters u towards a new set v where it holds
that —1 < v; <1 for each v; is obtained as follows:

v=Du+g (5.41)
where D is the diagonal matrix given by
2 2 2
D = diag —, — - 5.42
dine e e e AE) O

and g is a translation vector given by

max min

9i = ——m
ax
u;

—. (5.43)
— U;n

Unfortunately, the boundaries given by u™i" and 4™** are generally not known.
Y U i & y

The dependence of the error function on the manually scaled parameters of the water
layer is given in the contour plot of Figure 5.4(b).

From Figures 5.4(a) and 5.4(b), it follows that the traveltime in a layer and the
reflection coefficient between the considered layer and the subsequent layer can be
calculated almost independently from each other.
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Fig. 5.4 Influence of the traveltime in the water layer and the reflection coefficient be-
tween water and oluminium on the error function after user-defined parameter
scaling.

On the other hand, the traveltimes in the different layers are dependent on each
other, as can be seen from Figure 5.5(a) where the error function is shown as a
function of #y and ¢;. Similarly, perturbations on the reflection coefficients at the
interfaces of the aluminium layer can also compensate for each other — as can be
seen from Figure 5.5(b}.

The first-order approach

The goal of optimisation is to arrive at the true set of parameters, starting from an
estimated set. As stated previously in this subsection, it is assumed here that the
true set is given in Table 5.1, and the estimated set is given by Table 5.2. In vector
notation, this means that

6.7568 10~ 6.7568 10~3

.| 084207 o | 081465

= 179365108 " T [8.2540 10°8| (5.44)
—0.84207 —0.81465

The estimated point is indicated with a * sign in Figure 5.3(b).

The first-order algorithm — with the normalisation of the parameter space as stated
in Equation (5.39) — will now be used in order to improve these perturbed parame-
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Fig. 5.5 Contour plot of the error function for different values of the traveltimes in the
water layer and the aluminium layer and the reflection coefficients between wa-
ter, aluminium and water.

ters until the result matches with the result of the true configuration. The gradient
Ve(u?) is calculated using Equations (5.11), and the search direction q° is obtained
using Equation (5.23):

2.273 1077
—0.500

6.348 1077 |’
—0.561

Q=D V) = (5.45)

where the elements of D are composed using Equation (5.43). A scalar « is now
needed, before Equation (5.23) can be applied. The upper limit on « is determined
by the constraints for the parameters. These constraints have to be chosen by the
user 2, based on a priori knowledge of the material:

6.081 10—# 7.302 10-8
win 0.8 e 0.9 )
W T lrers 108" T (85711078 (5-46)
~0.9 —08

2Note that these boundaries in general are not the same boundaries that define the transforma-
tion matrix and vecior of Equations 5.42 and 5.43.
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Fig. 5.6 DBehaviour of the error-function as a function of the scaling coefficient o

In order for u**1 to be located inside the area bounded by the constraints, it follows
that the maximum value for a is 1.50 1072.
In Figure 5.6, the error function is shown as a function of a.

From this plot, it turns out that the assumption that the error function is smooth
in the neighbourhood of the minimum is reasonable.

For the choice of of, as needed in Equation (5.23), a second order polynomial in-
terpolation is performed, after the search interval has been reduced by using the
Golden section search — see Gill et al. (1981).

For each iteration step, the obtained acoustic parameters are shown in Figure 5.7. It
can be seen that after a few steps, the traveltimes are obtained with a high accuracy.
It takes a lot more iteration steps, however, in order to obtain the same accuracy
for the reflection coeflicients.

Second order approach

The second order method that will be used here, is based on the Gauss-Newton
method. Optimisation methods given in the literature are rather general, though,
and do not take into account the specific behaviour of the problem.

Since it follows from the contour plots that the reflection coefficients and traveltimes
are rather independent from each other, and since the error function is much more
influenced by changes in a traveltime than equal (absolute or relative) changes in a
reflection coefficient, a modified method is used.
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Fig. 5.7 Improvements on the material parameters of a water-aluminium configuration
obtained after successive steps of the linear optimisation algorithm

Each iteration step consists of two parts. In the first part, only the traveltimes
are updated, and the reflection coefficients are kept constant. This will have a
major influence on the value of the error function. Furthermore, the influence of
the different traveltimes is about the same order of magnitude, so no complicated
parameter scaling is required. In the second part, the newly obtained traveltimes
are kept constant, and the reflection coefficients are updated. This results in a minor
improvement on the error, but it can lead to rather large updates for the reflection
coeflicients.
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Fig. 5.8 Improvements on the material parameters of an aluminium layer embedded in
water, obtained after successive steps of the modified Gauss-Newton algorithm.

The results of this modified Gauss-Newton algorithm are for the successive steps
given in Figure 5.8. It is remarkable that only 4 iteration steps are needed in order
to obtain the same accuracy as is obtained with 253 iteration steps using the linear
method with automatic scaling of the parameters. Therefore, in the remainder of
this chapter, only the modified Gauss-Newton method will be used.
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5.2.2 Glare

In this subsection, the modified Gauss-Newton algorithm is used to obtain the ”true”
material parameters of a glare 2/1 material, starting from an initial set of parameters
that is different from the true one. The true set is given in Table 5.3 and the
perturbed parameters arc given in Table 5.4.

Glare 2/1 in water
Layer | material | Az(mm) | p (;‘;—%) c () R t (s)
0 water 0.1 1000 1480 | 0.842 | 6.756 108
1 aluminium 0.4 2740 | 6300 | -0.554 | 6.349 10®
2 prepreg 0.25 1600 3100 | 0.554 | 8.065 10~*®
3 aluminium 0.4 2740 6300 | -0.842 | 6.349 108
4 water 00 1000 1480 - -

Table 5.3 ”True” material properties for a Glare 2/1 material embedded in water.

Glare 2/1 in water
Layer | material | Az(mm) | p (?n%) c () R t (s)
0 water 0.1 1000 1480 | 0.825 | 6.756 108
1 aluminium 0.395 2740 6100 | -0.480 | 6.475 108
2 prepreg 0.25 1600 | 3400 | 0.477 | 7.353 10~8
3 aluminium 0.405 2740 6300 | -0.824 | 6.429 108
4 water o0 1000 1480 - -

Table 5.4 Initial material properties for a Glare 2/1 material embedded in water.

The corresponding acoustic responses of these configuration are compared with each
other in Figure 5.9. Note again that in Figure 5.9(b), the residue function r(t) is
shown — sce Equation (5.6).

The influence of perturbations on the traveltime in one layer and the reflection
cocfficient at the bottom interface of the considered layer are shown in the contour
plots of Figure 5.10.

Again, it can be seen that the reflection coefficients can be calculated relatively
independent from the traveltimes. The mutual dependence of the traveltimes in
the different layers is shown in Figure 5.11, and the dependence on the reflection
coeflicients is shown in Figure 5.12.

Starting with the initial set of 8 parameters of Table 5.4, the modified Gauss-Newton
method is applied. The improvements for the parameters after each iteration step
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Fig. 5.9 Simulated reflection measurement on a Glare 2/1 material embedded in water

for two sets of parameters.

are given in Figure 5.13. Again, it can be seen that the modified Gauss-Newton
method gives the "true” values after very few iterations.
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Fig. 5.10 Contour plots obtained by altering the traveltime and reflection coefficient in
one layer of the Glare 2/1 configuration.
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Fig. 5.12 Contour plots obtained by altering the reflection coefficients in two different
layers of the Glare 2/1 configuration.
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Fig. 5.13 Improvements on the material paramneters obtained after successive steps of the
modified Gauss-Newton algorithm.
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5.3 Optimisation on measured data

In the previous section, it is shown that the optimisation algorithms can be used
to obtain the "true” set of parameters of a configuration, starting from an initial
”estimated” set.

The modified Gauss-Newton algorithm will now be used in order to obtain the set
of parameters where the corresponding simulated reflection response matches with
the real measurement, for a number of configurations.

5.3.1 Aluminium layer

In this subsection, the configuration exists of an aluminium disk embedded in water.
The same configuration is discussed in section 4.6. The material parameters of this
configuration, obtained by the Recursive Direct Inversion are given in Table 4.13.
Based on these parameters and on the expected material parameters of aluminium,
an initial set is given in Table 5.5.

Material parameters in aluminium layer configuration
initial ¢[s]
6.76 1078
1.22 1077

Layer | initial R
0 0.842
1 -0.842

Table 5.5 Initial material parameters of an aluminium configuration embedded in water.

The improvements of 10 successive optimisation steps are given in Figure 5.14. The
results are compared with the obtained parameters using the Recursive Direct Inver-
sion method in Table 5.6. The obtained values for the reflection coeflicients and the

Material parameters in aluminium layer configuration
Layer | R (RDI) | R (IPO) | t(RDI)[s] | t(IPO)]s]
0 0.851 0.845 7.50 1078 | 7.50 1078
1 -0.782 -0.755 | 1.221077 | 1.22 1077

Table 5.6 Comparison between material parameters of an aluminium configuration em-
bedded in water obtained with the Recursive Direct Inversion (RDI) method
and the method of Iterative Parametric Optimisation (IPO).

traveltimes are comparable for both methods. The traveltimes are obtained with a
very high accuracy, and the reflection coefficients give a strong indication about the
specific acoustic impedance of the material beneath the aluminium layer — which
is water, in the used configuration.
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Fig. 5.14 Improvements of the material parameters of the aluminiumn configuration ob-
tained after successive steps of the modified Gauss-Newton algorithm

5.3.2 Glare 2/1

At this point, the modified Gauss-Newton algorithm is used to obtain the material
parameters of a Glare 2/1 material. The reflected pressure wavefield is measured,
and in Section 4.6.2, the Recursive Direct Inversion algorithm is used in order to
obtain the material parameters. The results of this inversion are given in Table 4.16
and Table 4.15.

An initial set of parameters for the parametric optimisation is given in Table 5.7.
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Material parameters in a Glarc 2/1 configuration
Layer | material | initial R initial ¢[s]

0 water 0.842 6.76 1078

1 aluminium | -0.553 6.35 10~®

2 prepreg 0.551 8.06 108

3 aluminium | -0.842 6.35 10~%

4 water -

Table 5.7 Initial material parameters of a Glare 2/1 configuration embedded in water.
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Fig. 5.15 Improvements on the material parameters of a measured Glare 2/1 material

obtained after successive steps of the modified Gauss-Newton optimisation al-
gorithm.

The results of 20 successive optimisation steps is shown in Figure 5.15. The resulting
reflection coefficients and traveltimes are given in Table 5.8. An interesting check
for the result given by the optimisation algorithm is the comparison between the
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Material parameters of a Glare 2/1 configuration
Layer | calculated R calculated t[s]

0 0.819 6.76 1078

1 -0.439 5.83 1078

2 0.489 8.23 10~7

3 -0.679 5.99 1078

Table 5.8 Material parameters of a Glare 2/1 configuration embedded in water, as 0b-
tained after 20 steps of the Iterative Parametric Optimisation algorithm.
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Fig. 5.16 Comparison between measured reflected signal and signal obtained based on the
results of the optimisation algorithm.

measured signal and a simulation that is obtained using the acoustic parameters
returned by the optimisation. In Figure (5.16), these two signals are compared with
each other. It can be seen that the differences between the signals are very small.

Assuming that the acoustic velocity inside the layers is well-known, a series of depth-
impedance values can be calculated. Together with the expected values, the obtained
plot is given in Figure 5.17. The obtained values for the specific acoustic impedances
are compared with the expected values and the values obtained by the RDI-method
in Table 5.9. Ifit is assumed that the acoustic velocity in the different layers is known,
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Fig. 5.17 Depth-impedance plot of the acoustic impedance as a function of depth for a
simulated reflection measurement on a Glare 2/1 material. Dark colours denote
a high impedance value.

Obtained specific acoustic impedances for a glare 2/1 configuration
Layer | expected Z;[kgm~2s7!] | Z;[kgm=2s~!] (IPO) | Z;[kgm s~ '|(RDI)
0 1.48 1.48 1.48
1 17.26 14.90 15.46
2 4.96 5.79 5.80
3 17.26 16.91 14.24

Table 5.9 Comparison between the expected acoustic impedance, the acoustic impedance
obtained by the Iterative Parametric Optimisation algorithm and the acoustic
impedance obtained by the Recursive Direct Inversion algorithm applied on real
measurements on a Glare 2/1 configuration.

the results from the IPO-algorithm can be used to estimate the layer thickness. The
results are given in Table 5.10. Again, the results obtained by the two methods agree
with each other. It can be noticed that for the deeper layers, the method of the
iterative parametric optimisation give better results. It was shown in the previous
chapter that errors propagate throughout the recursion of the RDI-method. The
drawback of the method of the iterative parametric optimisation is that it is slower,
especially when a high accuracy is desired — and many iteration steps have to be
performed.

It thus turns out that both methods have their advantages and disadvantages. The
RDI method is fast and gives good results for materials with only a few layers. It
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Obtained layer thickness in a glare 2/1 configuration ]
Layer expected Az;imm] | Az;[mm] (IPO) | Az;[mm] (RDI)
0 (water) 0.1000 0.1000 0.1000
1 (aluminium) 0.4000 0.368 0.369
2 (prepreg) 0.2500 0.255 0.257
3 (aluminium) 0.4000 0.378 0.373

157

Table 5.10 Comparison between the expected layer thickness, the thickness obtained by
the Iterative Parametric Optimisation algorithm and the thickness obtained
by the Recursive Direct Inversion algorithm applied on real measurements on

Glare 2/1.

is also useful for materials with many layers, when one is more interested in the
properties of the top-most layers than in the properties of the bottom-most layers.
The quality of the results obtained by the TPO method is less dependent on the
depth of the layers. On the other hand, the quality is dependent on the number of
iterations that are performed, and thus on the execution time.
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Chapter 6

Conclusions and recommendations

In this last chapter, some concluding remarks are made concerning the developed
theory and its practical applications. Based on both theoretical results and practical
experience, some recommendations for further investigations are given.

6.1 Conclusions

The objective of this thesis is to develop algorithms for characterising acoustic reflec-
tion responses from thin, laminated materials. This ultrasonic inspection technique
has been developed to overcome the limitations that are encountered in the aerospace
industry with the currently used acoustic transmission techniques.

In order to get more information from the measured acoustic reflection response of
a material, it is necessary to understand the physical processes that take place when
an acoustic wave interacts with a material.

In this thesis, a model has been developed that describes the microscopic and macro-
scopic phenomena inside the material. In general, the formulation of the acoustic
reflection response may be very complicated. Using some assumptions, though, a
simple model is obtained. This model is based on the principles of wave propagation
— by means of a propagation factor W — and reflection at interfaces - by means
of the reflection coefficient R. A similar model based on propagation and reflection
is extensively used in data processing for seismic exploration?.

Typical for the present research, is that the materials that are to be examined con-
sist of thin layers. This is taken into account in the model.

Although the formulation of this model is very general, the definitions for the prop-
agation factor and the reflection coefficient may be adapted to a particular problem.

IThe models used in seismics are often two or three dimensional, whereas the model developed
in this research is one dimensional.
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In this research, formulations are given for propagation and reflection in instanta-
neously reacting media and in media with relaxation effects.

Simulations using the model for instantaneously reacting media show a very good
correspondence with actually recorded measurements performed on a thin aluminium
disk.

This model is not adequate, though, for the simulation of reflection measurements
on so-called prepreg layers 2. It appears that when performing measurements on
this material, some acoustic energy is dissipated. An extended formulation for the
propagation factor and the reflection coefficients takes frictional forces and bulk
inviscidness into account and therefore allows the dissipation of acoustic energy. By
including this, a better match between simulations and measurements is obtained.

The quality of the measurements is important for the comparison between simu-
lations and measurements and for the retrieval of the material parameters. The
ultimate goal is to obtain data that are not disturbed by any kind of noise. Since
in practice there is always some noise present, it is advantageous to pre-process the
data in order to decrease the noise.

The quality of the data is also influenced by the quality of the source signal, being
the acoustic excitation for the system. This source signal has to be well-known and
repeatable.

Using the forward model, a transfer function can be derived that calculates the ex-
pected acoustic response based on the used source signal and the geometrical and
material properties of the target.

The actual goal of this research is to obtain the material properties, based on the
used source signal and the measured acoustic response.

In this thesis, two methods are described for obtaining the material parameters of a
laminate.

The first one is based on the inverse formulations of the forward model. It is a recur-
sive method, since the parameters of the different layers are obtained one at a time.
Theoretically, this method should give correct results, but due to noise in the data
and due to the fact that not all of the assumptions used in the formulation of the
forward model are completely satisfied, the results will not be exact. Moreover, due
to the recursive nature of the method, errors will propagate through the different
recursion steps.

In the second method, a simulated reflection response is calculated based on an ini-
tially estimated set of parameters. The simulated response is compared with the
actual measurement, and the parameters are updated. This procedure is repeated
until the matching between the measured signal and the simulated response is good
enough, or until no further improvement occurs. Generally, this parametric opti-

2A prepreg layer consists of a fibre-reinforced resin — see Appendix A.
g
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misation method will give better results when more iteration steps are performed.
Compared with the first method, however, this method is rather slow.

The inversion methods give information about the acoustic traveltimes in the differ-
ent layers and the reflection coeflicients at the interfaces. For inspection purposes,
one is more interested in the acoustic impedance of the material as a function of
depth. This conversion can be done easily assuming the wave propagation velocity
is known. One of the advantages of depth-impedance plots is that void inclusions
and delaminations are clearly observed, due to their low acoustic impedance. The
latter is extremely important in the inspection of laminated materials, where a low-
impedance region may indicate a delamination.

The inversion methods are applied on both simulated and measured data. The ap-
plication of the inversion methods to the simulated reflection response of a Glare
3/2 material with a delamination, shows that the lateral position and the depth of
the delamination can be obtained with a high accuracy.

Practical measurements are done on an aluminium disk and a Glare 2/1 laminate.
Both inversion methods are able to detect the different layers, and give a ”fair”
estimation of the acoustic impedance of the constituting layers. As a consequence,
it should be possible to automatically detect very low impedances, due to delami-
nations. For a fast detection of the material parameters of a target with only a few
layers, the method of Recursive Direct Inversion is advised. For a more accurate
result, or in the casc the target material consists of many layers, it is advised to use
the method based on Tterative Parametric Optimisation.

6.2 Recommendations

In this thesis, it has been shown that it is possible to obtain the material parameters
of the different layers in a laminate, based on advanced processing of reflection
measurements. Some of the recommendations given below can be applied using the
model described in this thesis, while others suggest an expansion of the developed
model.

6.2.1 Using the existing model

o The quality of the obtained signal can be improved. The current C-scan system
used in this research project has been developed for large-scale inspection by
means of transmission measurements. The built-in pulser and trigger system
arc not very accurate, and do not match the requirements of the sensitive
Panametrix transducers. It is necessary however to obtain a discretized signal
with a high sampling rate and with a good resolution. All aspects of the
data acquisition system have to be adjusted to each other. Starting from the
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6.2.2

specifications of the transducer — i.e. a frequency range and a power spectrum
— - a pulser (for delivering the signal) and an A /D converter (for obtaining the
signal) have to be selected. Cables have to be chosen very carefully in order
to minimise noise.

Where there is a very good match between simulations and measured acoustic
responses of an instantaneously reacting material, the theory describing the
propagation and reflection effects in media with relaxation can be improved.
It should be investigated whether or not the coeflicients of frictional forces and
the coefficient of bulk inviscidness are frequency- and amplitude-dependent.
The prepreg samples provide a good test-case for this research.

Depending on the needs of a particular user group, the information from the
inversion process does not have to be presented in a depth-impedance plot. It
is possible to make a three-dimensional image of the target where the value of
the acoustic impedance is indicated with colours.

Enhanced model

The performed acquisitions are all zero-offset measurements, which means that
the signal is measured at the same lateral position where it was generated. As
a consequence, one position of the transducer will give information only about
one vertical line in the material, and vice versa.

Multi-offset measurements, where the distance between the source and the re-
ceiver is non-zero and varies, are very common in seismic exploration. By vary-
ing the distance between the source and the receiver, by using more receivers
or by a combination of both techniques, there will be more measurements that
contain information about one vertical line in the material. A requirement
is that the source signal has to be emitted into a specific direction, or into a
broad range of angles. This principle is clarified in Figure 6.1.

The reflection coefficient is dependent on the angle of incidence of the wave-
field. Using non-normal angles of incidence therefore can reveal more informa-
tion about the interface where reflection occurs. This technique is extensively
used in seismics — e.g. Ostrander (1984), van Wijngaarden (1998).

It is possible to develop processing techniques that extrapolate the measured
signal backwards to a point in the material where it was reflected. All measure-
ments that contain information about the considered point can be combined
and this way more information about that point is obtained. In seismic explo-
ration, this technique already exists and is called Common Focus Point (CFP)
technology — e.g. Thorbecke (1997).

When an incident wave arrives at the boundary of a material under a non-
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\

Fig. 6.1 The principle of multi-offset measurements.

perpendicular angle, mode conversion occurs at the interface. The incident
compressional wave will be converted into a compressional reflected wave and
into compressional and shear waves entering the material.

When the shear waves arrive at the boundary between the material and the
water (after being reflected at least once inside the material), the wave is partly
converted into a compressional transmitted wave in water. This principle is
illustrated in Figure 6.2.

Fig. 6.2 The principle of mode conversions. Compressional waves are represented by
solid lines, shear waves are shown with dotted lines. Note that for simplicity not
all conversions are shown.
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The above mentioned process can be compared with the mode conversions oc-
curring at the bottom of the ocean in marine seismic measurements — e.g.
Schalkwijk et al. (1999).

Shear waves have other properties than the acoustic pressure waves, and they
can reveal more information about the material and the interfaces. If both the
compressional wave velocity and the shear wave velocity are obtained, more
material parameters can be calculated than in the case only the compressional
velocity is known. This can for example give information about the porosity
of the considered material. In seismics, rclationships between the compres-
sional and the shear wave velocity are used as lithology indicators — e.g. van
Wijngaarden (1998).




Appendix A

Glare

The theory developed in the first part of Chapter 2 is very gencral. The basic
principles can be applied to different media with their own geometrical and mate-
rial propertics. The developed model, however, is specifically tuned for laminated
materials, since this is the goal of the present research.

A.1 Structure and naming

Glare is a material developed at Delft University of Technology - see Roebroeks
(1991) and Vlot et al. (1998) — and it belongs to the family of the fibre-reinforced
metal laminates. These materials typically consist of alternating layers of metal
sheets and fibre-reinforced resin layers.

In Glare, the metal sheets are made of aluminium, and the fibre-reinforced resin
layers are composed of glass fibres in an epoxy resin'. The layered structure of
Glare is shown in Figure A.1.

Both the aluminium and the prepreg layers can have different properties. For Glarel,
the aluminium alloy is 7475-T76% and one layer has a thickness between 0.3 mm and
0.4 mm. The aluminium alloys in the other Glare variants are 2024-T3.

The prepreg layers are composed of two or more sub-layers, each having a thickness of
0.125 mm. In cach sub-layer, the filers are oriented in one particular direction. If the
alternating sub-layers in a prepreg layer have the same fibre-direction, the resulting
prepreg layer has a uni-directional orientation. On the other hand, if the fibre
direction in a sub-layer is perpendicular to the fibre direction in the enclosing sub-
layers, the layer has a cross-ply orientation. An overview of the possible combinations
and their corresponding names is given by Coenen (1998).

L Arall, a predeccssor of Glare consists of alternating aluminium and aramid fibre layers.
2Information about the properties of different alloys can be found on the World Wide Web,
http://www.matweb.com, or in the literature  e.g. Boyer and Gall (1985).
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Fig. A.1 Layered structure of a Glare 3/2 material. Aluminium layers are coloured dark
grey, and prepreg layers are coloured light grey, which is in agreement with the
acoustic impedance of these materials.

Apart from the internal properties of both the aluminium alloy and the prepreg
layer, the number of layers is an important property. Therefore, Glare laminates
are typically called Glare z/y, where z is the number of aluminium layers in the
material, and y is the number of prepreg layers. Since each layer is covered by two
layers of the other kind — except for the most outward aluminium layers —, it has
to hold that x =y + 1.

A.2 Properties

The properties of fibre metal laminates — compared with the properties of tra-
ditional aluminium structures - are studies by a.o. Slagter (1994). One of the
most important benefits of Glare over traditional aluminium materials, is the crack-
bridging mechanism which is illustrated in Figure A.2.

When a crack occurs in one of the aluminium layers, the load can — partially —
be carried by the glass fibres in prepreg layers next to the aluminium layer with the
crack. As a consequence, the crack can not proceed — at least, not as fast as it
would proceed without a prepreg-layer.

The slow crack growth in Glare has an important effect on the safety and on the
total cost of the material — and consequently the airplane it is composed of. In
Figure A.3, the crack length as a function of time is shown. The figure gives only
relative information about crack length and evolutions. The minimum crack size
that can be detected by a particular scan system is denoted by ;. The critical crack
size, which is considered to be damaging, is given by .. It follows from Figure A.3
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Fig. A.2 Crack-bridging system in Glare.

crack size
A

At(aluminium)

la

Fig. A.3 Crack growing in aluminium (dotted line) and Glare (solid line). As can be scen,
the time window At in which defects can be detected before they are critical, is
much larger for Glare than for aluminium.

that the time between the minimum detected crack size and the critical crack size is
much larger for Glare than for aluminium. As a consequence, there is a larger time
window in which investigators can determine possible damage in a Glare structure.
Besides, Glare materials have to be inspected on a less regular basis than aluminium
materials.
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Characterisation of laminated construction
materials based on ultrasonic reflection
measurements

The goal of ultrasonic inspection is to obtain information about the examined ma-
terial. Current ultrasonic inspection techniques based on C-scan measurements do
not reveal information about the structure of the material. Apart from that, the
target material needs to be accessible from both sides.

The method described in this thesis reveals more information about the internal
structure of the material. Besides, it is based on reflection measurements and as a
consequence, the material needs to be accessed from only one side.

A good understanding of the interaction of an ultrasonic wave with a material is
required. The study of these interactions is very general, and can also be applied
on different fields — e.g. medical or seismic applications. Based on the knowledge
of these interactions, a model is developed for the specific case of the ultrasonic
inspection of laminated materials. The devcloped model is valid for layers composed
of instantancously reacting media as well as for layers composed of media with re-
laxation effects.

The model allows one to perform simulations of reflection or transmission measure-
ments on targets. The obtained simulations can be compared with rcal obtained
measurements. It is shown in this thesis that the simulations based on the developed
model resemble real measurements after some filtering and statistical operations are
performed on these measurements.

Based on the developed model, inversion algorithms can be developed. The goal of
inversion is to obtain the material parameters of the examined target, based on the
measurcd response.

Two different inversion algorithms are described, the first one based on a direct
inversion of the equations of the forward model, the second one based on an iterative



174 Summary

optimisation of the material parameters.

Both algorithms are first tested on simulations of reflection measurements. It is
shown that there is a very good match between the true material parameters and the
parameters obtained by the inversion algorithms. The inversion algorithms can be
used to obtain the specific acoustic impedance of the different layers of the material,
or they can be used to estimate the thickness of the layers. Especially the layer
thickness is obtained with a very high accuracy.

The inversion methods are also tested on reflection measurements on an aluminium
layer and a Glare 2/1 laminate. It turns out that both the layer thickness and
the specific acoustic impedance of the different layers can be obtained with a good
accuracy. Both methods have their advantages and disadvantages. The method
based on direct inversion is appropriate for materials with only a few layers, or when
processing time is critical. The method based on iterative parametric optimisation,
on the other hand, is appropriate when a high accuracy is required, or when the
material consists of a lot of layers.




Karakterisatie van gelaagde constructie
materialen, gebaseerd op ultrasone
reflectie-metingen’

Het doel van ultrasone inspectie is het verkrijgen van informatie over het onder-
zochte materiaal. De huidige ultrasone inspectie technieken gebaseerd op C-scan
metingen geven geen informatie over de structuur van het materiaal. Bovendien is
het noodzakelijk dat het beschouwde materiaal van twee kanten benaderd kan wor-
den.

Dc methode die in dit proefschrift beschreven wordt, geeft meer informatie over
de interne structuur van het materiaal. Daarenboven is ze gebaseerd op reflectie-
metingen. Dit laatste heeft tot gevolg dat het materiaal slechts langs één kant
benaderd moet worden.

Het is noodzakelijk een duidelijk inzicht te hebben in de interacties tussen een ultra-
sone golf en een materiaal. De studie van deze interacties is zeer algemeen, en kan
ook toegepast worden in andere onderzocksgebicden — bijvoorbeeld voor medische
en seismische toepassingen. Gebaseerd op de kennis van deze interacties is een model
ontworpen voor het specificke geval van de ulrasone inspectie van gelaagde mate-
rialen. Het model is zowel geldig voor lagen die bestaan uit instantaan reagerende
media als voor lagen die bestaan uit media waar relaxatie effecten optreden.

Uitgaande van dit model is het mogelijk om simulaties van reflectie metingen op
materialen uit te voeren. The bekomen simulaties kunnen vergeleken worden met
echte metingen. In dit proefschrift is aangetoond dat de simulaties gebaseerd op het
ontwikkelde model cen sterke overeenkomst vertonen met echte metingen, nadat een
aantal filter en statistische bewerkingen zijn uitgevoerd op de gemeten data.

Gebaseerd op het ontwikkelde model, kunnen inversie-algoritmes ontworpen wor-

1Flemish summary of Characterisation of laminated construction materials based on ultrasonic
reflection measurements.
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den. Het doel van inversie is het bekomen van de materiaal parameters van het
beschouwde materiaal, uitgaande van de gemeten reflectie-responsie.

In dit proefschrift worden twee verschillende inversic-algoritmes beschreven. De
eerste is gebaseerd op een rechtstreekse inversie van de vergelijkingen van het voor-
waartse model, terwijl de tweede gebaseerd is op een iterative optimalisatie van de
materiaal parameters.

Beide algoritmes worden eerst getest op gesimuleerde reflectie-metingen. Er wordt
aangetoond dat er een sterke overeenkomst is tussen de echte materiaal parameters
en de parameters dic door de inversie algoritmes bekomen worden. De inversie-
algoritmes kunnen gebruikt worden om de specificke akoestische impedantie van de
verschillende lagen van het materiaal te bekomen, of ze kunnen gebruikt worden
om de dikte van de verschillende lagen te schatten. Vooral de dikte van de lagen
wordt verkregen met een crg grote nauwkeurigheid. De inversie-algoritmes worden
ook getest op echte reflectie-metingen op een aluminium plaat en een Glare 2/1
laminaat. Het blijkt dat zowel de laagdikte als de specificke akoestische impedantie
van de verschillende lagen verkregen worden met een goede nauwkeurigheid.

Beide methodes hebben hun voor- en nadelen. De methode gebaseerd op de directe
inversie is geschikt voor materialen met slechts enkele lagen, of in het geval er een
strikte limiet is gesteld voor de verwerkingstijd. Aan de andere kant is de methode
gebaseerd op de iteratieve parametrische optimalisatie vooral geschikt wanneer een
grotere nauwkeurigheid vereist is, of wanneer het materiaal bestaat uit een groot
aantal lagen.
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