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Abstract Marchenko imaging can be seen as an internal multiple elimination scheme in imaging
domain. By solving coupled Marchenko equations, the measured seismic data can be correctly
redatumed to the subsurface with source positioned at subsurface and receivers positioned at
acquisition surface. Then, the artefact-free image of the source point can be retrieved by multi-
dimensionally deconvolving the redatumed up- and downgoing seismic data. The Marchenko
Multiple Elimination scheme, derived from coupled Marchenko equations, is a data domain
multiple elimination scheme. It can successfully predict and remove all orders of internal multiple
reflections without model information or adaptive subtraction. The data domain multiple elimination
scheme surgically removes internal multiple reflections without touching primary reflections. In this

paper, we give a detailed comparison of both imaging domain and data domain Marchenko
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multiple elimination schemes. One synthetic model is used to illustrate the performance of both

schemes and, the advantages and disadvantages of both schemes are discussed in detail.
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Fig. 1

Sketch of focusing function and Green's function (the source and receiver reciprocity theorem

. , .
is used here for Green's function)

(a) Focusing function; (b) Green's function.
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Fig. 2 Velocity and density models and the corresponding smoothed versions

(a) Velocity model, the box indicates the target zone which will be imaged; (b) Density model;

(¢) Smoothed velocity model; (d) Smoothed density model.
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Fig.3 The modelled shot gathers
(a) The modelled shot gather with source at (0 m, 0 m) in Fig. 2a;
(b) The modelled G| with source at (0 m, 1450 m) in Fig. 2c.
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Fig.4 The solved up- and downgoing focusing function

with 20 iterations
(a) The downgoing focusing function; (b) The upgoing

focusing function.
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Fig. 5 The solved Green's function

(a) The downgoing Green's function; (b) The upgoing Green's
function; (¢) The full Green's function; (d) The modelled

' .
Green's function as reference.
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Fig. 6 A comparison of zero-offset traces from Fig. 5¢ (red
dashed line) and Fig. 5d (blue solid line). The amplitude of

both traces is normalized
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Fig. 7 A comparison of migration/imaging results

(a) Reverse time migration result; (b) Marchenko imaging result.
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Fig. 8 Sketch of v* retrieved by multi-dimensionally convolving up- and downgoing focusing function with G ,

and U™ retrieved by multi-dimensionally convolving up- and downgoing Green's function with GI

(a) Sketch of v*; (b) Sketch of U*.
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Fig. 9 The modelled shot gather and the multiple
eliminated results with 2=10,15,20
(a) The modelled shot gather with source at (0 m,0 m); (b) The
multiple eliminated result with 2= 10; (¢) The multiple eliminated
result with #=15; (d) The multiple eliminated result with £=20.
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Fig. 10 A comparison of zero-offset traces from Fig. 9a
(blue solid line) and Fig. 9d (red dashed line). The
amplitude of both traces is normalized
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Fig. 11 A comparison of reverse time migration results

(a) Reverse time migration result of original dataset; (b)

Reverse time migration result of multiple eliminated dataset.

RUERG R 25 T & 2a BT os H AR SCR X0 S5 A8 5
A 2R E.

3 g

$£F Marchenko HH i ) Ji f5 380 )2 18] 22 U P
BB AR L BIAL B 2 )5 B 00 0 8 8 1 D AL AT LA
JAR SRR 1 B 2 (1) 22 U %) M T 45 4 4T 1
R SR, B 7h FroR s AR AR 4 T 2a PR i
T ef AR XA B 22 IR G 9 1R MME A O 2
3382 ) 22 YR Bk D 3k » AN i AT ] 3 i L AN
DC PC A D6k - mT LA A B 22 4 00 I 30 o B A
HOH JZ 0] 22 0PI Bk CAn 181 9d BIr 7). k1 1 B
P Z e W R 5 S A AVO/AVA
53T LA R i B i A5 14 R AR BSOS At 4 25 R R
JRAE LT Marchenko B IE i Ji¢ £ du #5405 450 )22 1]
20 YW BR B AR 2 R LS T T BR 2 8] 2 0% - (B AE
IR BRI, B S 2 ) 22 U T B R

A )R B i S

T AG SRR SR 35823 18] 22 UCIBEH BR B 2 i T
8 AR LA S SR B Y 1. ) e B S Ok B HUE
T ARSI A B AE SR DA BT b A T v AT LR )
AR B 22 UK. G A o 52 U8 S A RR Y Joi it 25 5
e P b 5 v A R B L 2 R TE T AN TR 1) R U T
e SRR B 2 3 BOUL I 80 40 i i 1% 2 5 DA e 75 1R
Il )2 (1] 22 I T B AR A Y AR 4 R b I 2 IR
WA G 1 5 A KA B8 ) 22 U 0 B O 1k 3R A 1Y
SR Z WA BE E R TH R . LA TP 2 U
I 77k g RO T 50 4R 1) SR A B v TR T T
B A T R B 1 DO 2 IR A R T e 2
B A0 YL DU S0 7y Ak 3k AR s Y 4% 1 R Y
TEOLT S PIRR 7 25 45 7T LAAR A5 AR BT 5 00 308 B 4
Y 45 8 (Jia et al. , 2018; Zhang and Slob, 2020a).

TS AG SR 2 [1] 22 Y T8 B 7 12 o S B H s X sk
g — > UG UK T 4 R bR o B, F T AR AR I AR R
AR 24 H bR SR XA R R A% RS 5/ S %07
TSR ORT L2 YCBOH BR BOR. MME J7 %
g S0 LI K Bl e A T R 22 U Y N 22 5K
fifp 3 2 (23) I BRIZ N 20 /9 22 0B, PR TR AR
s, BT MME Jr ik rh i) 5 0y A T 4 8
i B B (%) 45 55, Zhang il Slob (2020b) #2 Hi Ay P
BE A LI MME J5 3 09 1 5 AR BE AR — > o=
G o AT el AT LA E 5 194 3l F22 480 4% b 35K 7 38 0 3 11
TR UG ERZ 6] 2 W I BR B TR R I 7 (— 20 <
t << to) M TRIERI A, Zhang FI Slob(2020b) 42
Hh A PR SR AN TS .

4 gt

H: T Marchenko B 19 J3 {5 36 A1 %5 48 3= 1)
25 U I I A 2 80 4Rt 3K 0y L 5 i T 1 22 UK D
TR B AR IZ 18] 22 U U BR 50 AR 1] LAAE &
SR B 22 UCIBE - A 1 X b T R 45 4 1R . MME
AE by — Tl 52 4 B4l R 8l 14 07 125 AN T BAT AT
N UE P AR UK T LA 53 S £ 9 o O 5 3l
JI AT i ) J22 18] 22 U . A SO IRl 7 325 41 56 4 3
VAT T BRI B 2 L R P A A AR I ik Y A
B A RCEBEAT T 1R A0 A AT B A L 5 Ak
PO EE AL B R AT T e
Brift R AT 22 AUR R AR HL R 4 Delphi ©F 5% 41
LIPS RN FMIUEEE#



1424 H Bk ¥ B % R (Chinese J. Geophys. ) 65 ¥

References

Aratjo F V, Weglein A B, Carvalho P M, et al. 1994. Inverse
scattering series for multiple attenuation; An example with surface
and internal multiples. //64th Annual Meeting. SEG Expanded
Abstracts, 1039-1041.

Berkhout A J. 2014. Review paper: An outlook on the future of
seismic imaging, Part II. Full-wavefield migration. Geophysical
Prospecting , 62(5): 931-949.

Brown M P, Guitton A. 2005. Least-squares joint imaging of multiples and
primaries. Geophysics, 70(5) . S79-S89.

Davydenko M, Verschuur D J. 2018. Including and using internal
multiples in closed-loop imaging-Field data examples. Geophysics, 83
(4): R297-R305.

Jia X Y, Guitton A, Snieder R. 2018. A practical implementation of
subsalt Marchenko imaging with a Gulf of Mexico data set.
Geophysicss 83(5): S109-S419.

Loer K, Curtis A, Meles G A. 2016. Relating source-receiver interferometry
to an inverse-scattering series to derive a new method to estimate
internal multiples. Geophysics, 81(3): Q27-Q40.

Lu S P, Whitmore D N, Valenciano A A, et al. 2015. Separated-
wavefield imaging using primary and multiple energy. The Leading
Edge, 34(7). 770-778.

Slob E, Wapenaar K, Broggini F, et al. 2014. Seismic reflector imaging
using internal multiples with Marchenko-type equations. Geophysics,
79(2) . S63-S76.

Ten Kroode F. 2002. Prediction of internal multiples. Wave Motion, 35
(4): 315-338.

Thorbecke J, Slob E, Brackenhoff J, et al. 2017. Implementation of
the Marchenko method. Geophysics, 82(6) . WB29-WB45.
Thorbecke J, Zhang L. I, Wapenaar K, et al. 2021. Implementation
of the Marchenko multiple elimination algorithm. Geophysics,

86(2): F9-F23.

van der Neut J, Wapenaar K. 2016. Adaptive overburden elimination with
the multidimensional Marchenko equation. Geophysics, 81(5): T265-
T284.

van Groenestijn G J, Verschuur D J. 2009. Estimating primaries by

sparse inversion and application to near-offset data reconstruction.
Geophysics, 74(3): A23-A28.

Verschuur D J, Berkhout A J, Wapenaar C P A. 1992. Adaptive
surface-related multiple elimination. Geophysics, 57(9): 1166-
1177.

Verschuur D J, Berkhout A J. 2011. Seismic migration of blended
shot records with surface-related multiple scattering. Geophysics, 76
(1): A7-Al3.

Wang Y B, Zheng Y K, Zhang L. L, et al. 2014. Reverse time migration of
multiples: Eliminating migration artifacts in angle domain common
image gathers. Geophysics, 79(6) . S263-S270.

Wang Y B, Zheng Y K, Xue Q F, et al. 2017. Reverse time migration of
multiples; Reducing migration artifacts using the wavefield
decomposition imaging condition. Geophysics, 82(4) . S307-S314.

Wapenaar K, Thorbecke J, van der Neut J, et al. 2014. Marchenko
imaging. Geophysics, 79(3): WA39-WAS57.

Weglein A B, Gasparotto F A, Carvalho P M, et al. 1997. An inverse-
scattering series method for attenuating multiples in seismic reflection
data. Geophysics, 62(6): 1975-1989.

Whitmore N D, Valenciano A A, Sollner W, et al. 2010. Imaging
of primaries and multiples using a dual-sensor towed streamer.
// 80th Annual International Meeting. SEG Expanded Abstracts.,
3187-3192.

Zhang L. L, Staring M. 2018. Marchenko scheme based internal
multiple reflection elimination in acoustic wavefield. Journal of
Applied Geophysics, 159 429-433.

Zhang L. L, Slob E. 2019. Free-surface and internal multiple elimination in
one step without adaptive subtraction. Geophysics, 84(1): A7-All.

Zhang L. L., Thorbecke J, Wapenaar K, et al. 2019. Transmission
compensated primary reflection retrieval in the data domain and
consequences for imaging. Geophysics, 84(4): Q27-Q36.

Zhang L. L., Slob E. 2020a. A field data example of Marchenko
multiple elimination. Geophysics, 85(2): S65-S70.

Zhang L L, Slob E. 2020b. A fast algorithm for multiple elimination
and transmission compensation in primary reflections. Geophysical
Journal International , 221(1). 371-377.

ORICHiE T



