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ABSTRACT

Seismic reflection data can be redatumed to a specified boun-
dary in the subsurface by solving an inverse (or multidimensional
deconvolution) problem. The redatumed data can be interpreted as
an extended image of the subsurface at the redatuming boundary,
depending on the subsurface offset and time. We retrieve target-
enclosed extended images by using two redatuming boundaries,
which are selected above and below a specified target volume. As
input, we require the upgoing and downgoing wavefields at both
redatuming boundaries due to impulsive sources at the earth’s sur-
face. These wavefields can be obtained from actual measurements
in the subsurface, they can be numerically modeled, or they can be
retrieved by solving a multidimensional Marchenko equation. As
output, we retrieved virtual reflection and transmission responses
as if sources and receivers were located at the two target-enclosing

boundaries. These data contain all orders of reflections inside the
target volume but exclude all interactions with the part of the
medium outside this volume. The retrieved reflection responses
can be used to image the target volume from above or from below.
We found that the images from above and below are similar (given
that the Marchenko equation is used for wavefield retrieval). If a
model with sharp boundaries in the target volume is available, the
redatumed data can also be used for two-sided imaging, where
the retrieved reflection and transmission responses are exploited.
Because multiple reflections are used by this strategy, seismic res-
olution can be improved significantly. Because target-enclosed
extended images are independent on the part of the medium out-
side the target volume, our methodology is also beneficial to re-
duce the computational burden of localized inversion, which can
now be applied inside the target volume only, without suffering
from interactions with other parts of the medium.

INTRODUCTION

We start with a short introduction. This is followed by an outline
and a short review of reciprocity theorems, which play an important
role throughout the paper.

Motivation

Seismic redatuming uses reflection measurements at the earth’s
surface to obtain a virtual data set, as if sources and receivers had
been installed inside the subsurface (Berryhill, 1984). The reda-
tumed data, which are a function of subsurface offset and time,
can be interpreted as an extended image of the subsurface (Vascon-
celos et al., 2010). A conventional image can be computed by evalu-
ating the extended image at zero time and zero subsurface offset.
This methodology can be applied for various purposes, including

structural reflection imaging (Claerbout, 1971; Berkhout, 1980),
migration velocity analysis (Sava and Vasconcelos, 2010; Mildner
et al., 2017), and more quantitative subsurface characterization (de
Bruin et al., 1990; Ordoñez et al., 2016; Thomson et al., 2016).
Redatuming can be achieved by crosscorrelating the acquired re-

flection data with a wavefield extrapolator, which is typically com-
puted in a smooth subsurface model. It is well-known that multiple
reflections in the medium are not addressed by this procedure,
which can lead to the emergence of spurious arrivals in the reda-
tumed data space (Malcolm et al., 2007). In theory, more accurate
results can be achieved if propagators are computed in the physical
medium (Bakulin and Calvert, 2006; Schuster and Zhou, 2006), and
if upgoing and downgoing wavefields are separated (Mehta et al.,
2007). However, to eliminate all spurious events from redatumed
gathers, reflection data should be acquired along a closed boundary
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surrounding the new subsurface datum (Snieder et al., 2006). Un-
fortunately, such data cannot typically be acquired in conventional
seismic surveys. To overcome these limitations, one may apply re-
datuming by inversion (Xue and Schuster, 2008; Wapenaar and van
der Neut, 2010; Vasconcelos and Rickett, 2013; Aldawood et al.,
2015), which can be interpreted as a multidimensional deconvolu-
tion process. As a consequence of deconvolution, the redatumed
data contain no interaction with the part of the medium above
the redatuming level. This special property of multidimensional
deconvolution has been exploited before, for instance, to remove
interactions from the air-water interface in marine seismic data
(Amundsen, 2001; van Groenestijn and Verschuur, 2009; Lin and
Herrmann, 2013) or from a complex overburden in downhole data
(van der Neut et al., 2016).
To implement redatuming through a heterogeneous overburden,

in practice, we require knowledge of the Green’s functions in the
physical subsurface. This approach demands a highly detailed sub-
surface model or actual measurements in the subsurface, for in-
stance, by placing receivers in boreholes. Because the recorded
downhole waveforms can be directly related to the required Green’s
functions, seismic redatuming can be realized without a subsurface
model, either by crosscorrelation (Bakulin and Calvert, 2006;
Mehta et al., 2007) or by inversion (van der Neut et al., 2016).

The required wavefields may also be computed by evaluating an
inverse scattering series (Weglein et al., 2003) or a Bremmer series
(Malcolm et al., 2009; Davydenko and Verschuur, 2016). Alterna-
tively, we can estimate the required Green’s functions directly from
the reflection data that are acquired at the earth’s surface by solving
a multidimensional Marchenko equation (Broggini et al., 2012;
Slob et al., 2014; Wapenaar et al., 2014; da Costa Filho et al., 2015;
Singh et al., 2015). Internal multiples are effectively accounted for
by this methodology even though it only requires a smooth sub-
surface model (Behura et al., 2014; Broggini et al., 2014; Mildner
et al., 2017).
By solving the multidimensional Marchenko equation, all pri-

mary and multiple reflections at a given boundary in the subsurface
can be retrieved, bypassing the need to resolve the overburden in
detail. Hence, deep primary reflections from below the overburden
can be imaged, without suffering from the disturbing effect of over-
burden-related multiples (Wapenaar et al., 2014). It can be shown
that linear imaging of the redatumed data is equivalent to the im-
aging of primaries (Wapenaar et al., 2017). Hence, Marchenko im-
aging can also be interpreted as an internal multiple elimination
process (Meles et al., 2015; van der Neut and Wapenaar, 2016;
da Costa Filho et al., 2017). However, it has also been recently
shown that novel imaging conditions can be derived for multiply

reflected waves, given that a detailed model of
the subsurface is available (Halliday and Curtis,
2010; Fleury and Vasconcelos, 2012; Ravasi
et al., 2014, 2015b). To evaluate these imaging
conditions, we require reflection and transmis-
sion responses from two boundaries that enclose
the target volume. Unfortunately, such data are
generally not available. To facilitate the imple-
mentation of these imaging conditions in prac-
tice, we present a methodology by which these
responses, which we refer to as target-enclosed
extended images, can be retrieved from seismic
reflection data at a single acquisition boundary.
As we demonstrate with a synthetic example, this
methodology allows us to improve seismic reso-
lution in the target volume, given that a model
with sharp boundaries in that volume is available.

Outline

The goal of this paper is to present for the first
time how target-enclosed extended images can be
obtained and how they can be used for imaging a
target volume. As input, we require upgoing and
downgoing Green’s functions, with sources at the
acquisition boundary and receivers at two reda-
tuming boundaries ∂Vi and ∂Vj, located above
and below a selected target volume V in the sub-
surface, respectively. These Green’s functions can
be computed in a detailed subsurface model or
they can be directly measured in boreholes. In the
latter case, the recorded waveforms should be de-
composed into their upgoing and downgoing
components (Mehta et al., 2007; van der Neut
et al., 2016), as illustrated in Figure 1a. The re-
quired Green’s functions can also be computed
by solving a multidimensional Marchenko equa-

Figure 1. (a) Target-enclosed redatuming when data are physically recorded at two boun-
daries ∂Vi and ∂Vj. In step (1), the data are decomposed into its upgoing and downgoing
constituents. In step (2), the sources are redatumed. (b) Target-enclosed redatuming when
data are recorded at the acquisition boundary Sa (in the lower-left corner, we show the
smooth background model). In step (1), upgoing and downgoing wavefields are retrieved,
for instance, by solving the multidimensional Marchenko equation. In step (2), the sources
are redatumed. Black stars and triangles represent physical sources and receivers. White
stars and triangles represent virtual sources and receivers. Note that the redatumed data are
defined in a reference medium, which is reflection-free above ∂Vi and below ∂Vj, but
identical to the physical medium in between these boundaries.
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tion (Wapenaar et al., 2014), as shown in Figure 1b. This approach
requires seismic data to be recorded at acquisition boundary Sa and a
macro model of the propagation velocity.
In Figure 1a and 1b, we transform the Green’s functions (which

are either measured or retrieved) into a virtual data set, as if sources
and receivers had been installed at ∂Vi and ∂Vj. These virtual data
contain (1) the reflection response of the target volume from the
upper boundary, (2) the reflection response of the target volume
from the lower boundary, and (3) the transmission response from
the upper to the lower boundary. To retrieve these responses, we
solve an inverse problem, which is derived from reciprocity theorems
of the convolution and the correlation type. We describe this meth-
odology in the section “Target-enclosed redatuming with Green’s
functions.” In the next section, “Target-enclosed redatuming with fo-
cusing functions,”we present an alternative approach that is based on
focusing functions, rather than on the Green’s functions. Akin to the
Green’s functions, these focusing functions can also be retrieved by
solving a multidimensional Marchenko equation. In the “Examples”
section, the methodology is demonstrated on 2D synthetic data and
used to image a target volume from above and from below. In the
“Discussion” section, we argue whether to use the Green’s functions
or the focusing functions for redatuming. We also compare imaging
from above to imaging from below. Finally, we discuss how the re-
trieved reflection responses and the retrieved transmission response
can be used to improve seismic resolution, in case a velocity model
with sharp boundaries in the target volume is available.

Review

Throughout the paper, we consider wave propagation in a loss-
less acoustic medium, which is defined by the density ϱðxÞ and the
velocity cðxÞ, where x ¼ ðx; y; zÞ is a spatial Cartesian coordinate
system. Acoustic pressure fields are described in the frequency do-
main as pðx;ωÞ, where ω is the angular frequency. These fields
obey a (modified) Helmholtz equation, which is given by (Wape-
naar and Grimbergen, 1996)

ðϱ∂zðϱ−1∂z ·Þ þH2Þp ¼ −jωϱq; (1)

where ∂z ¼ ð∂∕∂zÞ, q is a volume injection rate density source, and
j is the imaginary unit. The (modified) Helmholtz operator H2 is
defined as

H2 ¼
ω2

c2
þ ϱ∂xðϱ−1∂x ·Þ þ ϱ∂yðϱ−1∂y ·Þ; (2)

where ∂x ¼ ð∂∕∂xÞ and ∂y ¼ ð∂∕∂yÞ. If medium properties are con-
stant or vary only smoothly at a depth level, the pressure field can
be locally decomposed into its downgoing components pþ and
upgoing components p−, where p ¼ pþ þ p−. These decomposed
quantities obey the one-way wave equation (Wapenaar and Grim-
bergen, 1996):

∂z
�
pþ

p−

�
¼ −jH1

�
pþ

−p−

�
; (3)

where H1 is a square-root operator that obeys H2 ¼ H1H1 (Grim-
bergen et al., 1998). In Appendix A, we show how this operator can
be computed numerically. Reciprocity theorems can be derived be-
tween decomposed fields in state A (indicated by subscript A) and

decomposed fields in state B (indicated by subscript B). For this
purpose, we define a cylindrical volume V in the subsurface, which
is bounded by two infinite horizontal boundaries ∂Vi at zi at the top
and ∂Vj at zj at the bottom. The medium properties in states A and
B are identical inside V but can be arbitrarily chosen outside this
volume. Further, we assume that no sources exist inside the volume.
We distinguish the reciprocity theorem of the convolution type (Wa-
penaar et al., 2014)Z

∂Vi

dxdyϱ−1ðpþ
A ð∂zp−

BÞ þ p−
Að∂zpþ

B ÞÞ

¼
Z
∂Vj

dxdyϱ−1ðpþ
A ð∂zp−

BÞ þ p−
Að∂zpþ

B ÞÞ; (4)

and the reciprocity theorem of the correlation type (Wapenaar et al.,
2014) Z

∂Vi

dxdyϱ−1ðpþ�
A ð∂zpþ

B Þ þ p−�
A ð∂zp−

BÞÞ

¼
Z
∂Vj

dxdyϱ−1ðpþ�
A ð∂zpþ

B Þ þ p−�
A ð∂zp−

BÞÞ; (5)

where superscript � denotes complex conjugation.

TARGET-ENCLOSED REDATUMING WITH
GREEN’S FUNCTIONS

In this section, we derive representations for target-enclosed reda-
tuming with Green’s functions. We start with a definition of Green’s
functions and their properties. Then, we derive representations for
Green’s functions at the upper boundary ∂Vi due to impulsive sources
at the earth’s surface. We do the same for Green’s functions at the
lower boundary ∂Vj. Finally, we show how target-enclosed extended
images can be retrieved by inverting these representations.

Green’s functions

The Green’s function Gðx; xs;ωÞ is defined as the pressure field
pðx;ωÞ due to an impulsive source at location xs ¼ ðxs; ys; zsÞ. For
notational convenience, we omit the dependence of the Green’s
function on ω in the following derivation. The Green’s function
obeys wave equation 1, with the following source term:

q ¼ δðx − xsÞδðy − ysÞδðz − zsÞ; (6)

where δðxÞ is a Dirac-delta function. If the half-space above zs is re-
flection-free, the following limit can be derived for the vertical deriva-
tive of the downgoing Green’s function (Wapenaar et al., 2014):

lim
z→zsþ

∂zGþðx; xsÞ ¼ −
jωϱ
2

δðx − xsÞδðy − ysÞ; (7)

where zsþ is zs in the limit from below. Because limz→zs−∂zG
þ

ðx; xsÞ ¼ 0 (where zs− is zs in the limit from above), the downgoing
Green’s function is discontinuous at the source location. Similarly, if
the half-space below zs is reflection-free, we find the following limit
for the vertical derivative of the upgoing Green’s function:

Target-enclosed seismic imaging Q55
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lim
z→zs−

∂zG−ðx; xsÞ ¼
jωϱ
2

δðx − xsÞδðy − ysÞ: (8)

Because limz→zsþ∂zG
−ðx; xsÞ ¼ 0, the upgoing Green’s function

is also discontinuous at the source location.
The Green’s functions can be defined either in the physical

medium or in a reference medium. We define a specific reference
medium, which is reflection-free above boundary ∂Vi and below
boundary ∂Vj. In between these boundaries, the medium properties
of the reference medium are identical to the medium properties of
the physical medium. We refer to the Green’s functions in this spe-
cific reference medium with a bar, i.e., Ḡðx; xsÞ. The Green’s func-
tions in the physical medium are indicated without such a bar, i.e.,
Gðx; xsÞ. With target-enclosed redatuming, we aim to retrieve the
Green’s functions in the reference medium from responses in the
physical medium, as we have illustrated schematically in Figure 1a
and 1b.

Green’s function representations at the upper boundary

To derive representations for the Green’s function at the upper
boundary of the volume ∂Vi, we substitute the wavefield p�

A ¼ G�

ðx; xaÞ in the physical medium in state A. Here, xa ¼ ðxa; ya; zaÞ is
a location at the earth’s surface, where za < zi < zj. In state B, we
choose the reference medium that we specified in the previous sec-
tion (which is reflection-free outside the target volume). An impul-
sive source is positioned at xi, which is located on the boundary ∂Vi

in the limit from above (such that xi ∈= V). The resulting pressure
field in state B is p�

B ¼ Ḡ�ðx; xiÞ. Because the part of the reference
medium above the volume V is reflection-free, it follows that the
downgoing field Ḡ�ðx; xiÞ at ∂Vi can be described by equation 7
with the substitutions xs → xi and Gþ → Ḡþ. Because the part of
the reference medium below V is also reflection-free, it follows that
Ḡ−ðx; xiÞ and its vertical derivative vanish at ∂Vj. When the relevant
wavefields are substituted into equation 4, the following represen-
tation of the convolution type can be derived:

G−ðxi; xaÞ ¼
Z
∂Vi

dxdyGþðx; xaÞ
2H1

ωϱ
Ḡ−ðx; xiÞ

þ
Z
∂Vj

dxdyG−ðx; xaÞ
2H1

ωϱ
Ḡþðx; xiÞ: (9)

Alternatively, the wavefields can be substituted into equation 5,
yielding a representation of the correlation type:

Gþ�ðxi; xaÞ ¼
Z
∂Vi

dxdyG−�ðx; xaÞ
2H1

ωϱ
Ḡ−ðx; xiÞ

þ
Z
∂Vj

dxdyGþ�ðx; xaÞ
2H1

ωϱ
Ḡþðx; xiÞ: (10)

With equation 9, the upgoing wavefield that leaves volume V at
the upper boundary can be computed by propagating the wavefields
that enter the volume forward in time with the Green’s functions in
the reference medium.With equation 10, we can compute the down-

going wavefield that enters volume V at the upper boundary by
propagating the wavefields that leave the volume backward in time.
Alternatively, the representations can be inverted for the Green’s
functions in the reference medium, given that all Green’s functions
that enter and leave the volume are known. At this point, we have a
system of two equations and four unknowns, which cannot be
solved without additional constraints. To condition the inversion,
we derive two more representations for the wavefields that leave
and enter the volume at the lower boundary.

Green’s function representations at the lower boundary

To derive a representation for the wavefields at the lower boun-
dary, we follow the same reasoning as in the previous subsection,
except that we place the source in state B at xj, which is located on
the boundary ∂Vj in the limit from below (such that xj ∈= V). Be-
cause the part of the reference medium below the lower boundary is
reflection-free, the upgoing field Ḡ−ðx; xjÞ at ∂Vj can be described
by equation 8 with the substitutions xs → xj andG− → Ḡ−. Because
the part of the reference medium above the upper boundary is also
reflection-free, it follows that Ḡþðx; xiÞ and its vertical derivative
vanish at ∂Vi. Substituting the wavefield quantities into equations 4
and 5 brings us to the representations

Gþðxj; xaÞ ¼
Z
∂Vi

dxdyGþðx; xaÞ
2H1

ωϱ
Ḡ−ðx; xjÞ

þ
Z
∂Vj

dxdyG−ðx; xaÞ
2H1

ωϱ
Ḡþðx; xjÞ (11)

and

G−�ðxj;xaÞ¼
Z
∂Vi

dxdyG−�ðx;xaÞ
2H1

ωϱ
Ḡ−ðx;xjÞ

þ
Z
∂Vj

dxdyGþ�ðx;xaÞ
2H1

ωϱ
Ḡþðx;xjÞ: (12)

The interpretation of these equations is similar to the interpreta-
tion of equations 9 and 10. In equation 11, the field that leaves the
volume at the lower boundary is expressed by propagating the fields
that enter the volume forward in time, whereas in equation 12, the
field that enters the volume at the lower boundary is expressed by
propagating the fields that leave the volume backward in time. In
the following subsection, we show how equations 9–12 can be
jointly inverted for the Green’s functions in the reference medium.
This is the essence of target-enclosed redatuming.

Inversion of the Green’s function representations

Here, we show how equations 9–12 can be inverted to retrieve the
Green’s functions in the reference medium. Before doing so, we
consider the special case where ∂Vj is below the lowest reflector
at zj → þ∞, such that there are no upgoing waves at this boundary.
As a consequence of this choice, the second integral on the right
side of equation 9 vanishes, leading to

Q56 van der Neut et al.
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G−ðxi; xaÞ ¼
Z
∂Vi

dxdyGþðx; xaÞ
2H1

ωϱ
Ĝ−ðx; xiÞ; (13)

where Ĝ−ðx; xiÞ denotes the upgoing wavefield in an alternative
reference medium, which is reflection-free above ∂Vi, but identical
to the physical medium below this boundary. We can discretize the
known wavefield G−ðxi; xaÞ on the left side as a column vector g−ia,
where the subscripts a and i indicate that the sources and receivers
are located on boundaries ∂Va and ∂Vi, respectively. In this vector,
the data of the source locations xi and receiver locations xa are con-
catenated. In a similar way, the unknown Green’s function in the
reference medium Ĝ−ðx; xiÞ is discretized as ĝ−ii , where ii indicates
that sources and receivers are located on boundary ∂Vi. By using
this notation, equation 13 can be written as

g−ia ¼ AðGþ
iaÞϒRĝ−ii: (14)

In Appendix B, we show how to compute matrix AðGþ
iaÞ in the

frequency domain. Note that we have introduced matrixϒR in equa-
tion 14, which is defined as ϒR ¼ ð1∕2Þð1þ ϒTÞ, where ϒT is a
matrix that interchanges the source and receiver elements in the ar-
ray. Hence, ϒR enforces that the retrieved reflection response obeys
source-receiver reciprocity, according to Ĝ−ðx; xiÞ ¼ Ĝ−ðxi; xÞ.
Any solution that does not obey this relation lies in the null space
of ϒR and thus cannot be retrieved. Hence, the operator ϒR can
constrain the inversion in case the data are incomplete and in the
presence of noise. Further, we note that the square-root operator has
been included in the computation of matrix A (see Appendix B). As
a consequence, we retrieve the Green’s function of a monopole
source when equation 14 is inverted. This deviates from the work
of Wapenaar and van der Neut (2010) and others, where the Green’s
function of a dipole source is retrieved. This choice is made to facili-
tate local imaging schemes in the target volume that require the
Green’s functions of monopoles instead of dipoles. Note that the
retrieved monopoles can easily be transformed into dipoles by ap-
plying the square-root operator (which is computationally more at-
tractive than applying the inverse square-root operator required to
transform dipoles into monopoles).
Because each frequency component can be computed and inverted

individually, it is computationally attractive to solve equation 14 in
the frequency domain. However, because the frequency-domain for-
mulation lacks a constraint on the causality of the solution, it may
occur that the retrieved wavefields are (partially) acausal. Equation 14
can also be constructed after transforming the wavefields to the time
domain. In this formulation, quantities g−ia and ĝ−ii are to be discre-
tized as column vectors containing all samples in space and time,
whereas matrix ϒR should be applied to time slices, rather than to
frequency slices. In Appendix C, we show how matrix AðGþ

iaÞ
can be constructed in the time domain. In the time-domain approach,
we introducematrixϒH , which passes only causal solutions. Because
acausal solutions are in the null space of this matrix, causality is en-
forced. To exploit this advantage, we use the time-domain formu-
lation in all examples shown herein.
After the known quantities in equation 14 have been computed,

we can solve the equation, for instance, by least-squares inversion.
This strategy has also been referred to as multidimensional decon-
volution (Wapenaar and van der Neut, 2010; Ravasi et al., 2015a;
van der Neut et al., 2016). In this paper, least-squares inversion is

implemented by the LSQR algorithm (Paige and Saunders, 1982).
Alternative solvers can also be used, for instance, solvers that pro-
mote sparsity of the reference Green’s functions in an appropriate
transform domain (Tu and Herrmann, 2015). The latter strategy can
be beneficial in case of low signal-to-noise levels and incomplete
data (Lin and Herrmann, 2016). Alternatively, equation 14 can be
rewritten as a Neumann series (van Borselen et al., 1996; van der
Neut et al., 2013), providing a numerically stable solution in which
adaptive filters can easily be incorporated.
If zj is not chosen below the lowest reflector, the second integral

in equation 9 does not vanish, such that equations 13 and 14 are no
longer valid. Now equations 9–12 are to be solved together to
obtain the unknown Green’s functions in the reference medium,
discretized respectively as ḡ−ii , ḡ

þ
jj, ḡ

−
ij, and ḡþji . The number of

unknowns can be reduced by recognizing that the transmission re-
sponse obeys source-receiver reciprocity according to Gþðxj; xiÞ ¼
G−ðxi; xjÞ. This property is enforced by matrix ϒT that interchanges
the entries of sources and receivers, such that ḡ−ij ¼ ϒT ḡ

þ
ji . The other

Green’s functions in equations 9–12 are discretized, using a similar
notation as in equation 14. The following inverse problem can now be
formulated:

0
BB@

g−ia
gþ�
ia
gþja
g−�ja

1
CCA¼

0
BB@

AðGþ
iaÞϒR 0 AðG−

jaÞ
AðG−�

ia ÞϒR 0 AðGþ�
ja Þ

0 AðG−
jaÞϒR AðGþ

iaÞϒT

0 AðGþ�
ja ÞϒR AðG−�

ia ÞϒT

1
CCA
0
@ ḡ−ii
ḡþjj
ḡþji

1
A:

(15)

In this formulation, matrices Aðx�kaÞ can either be computed in
the frequency domain (see Appendix B), which is attractive from
a computational point of view, or in the time domain (see Appen-
dix C), where the causality constraint can be included. Akin to
equation 14, equation 15 can be solved for the unknown Green’s
functions in the reference medium, using, for instance, LSQR.

TARGET-ENCLOSED REDATUMING WITH
FOCUSING FUNCTIONS

As we discussed before, the Green’s functions at boundaries ∂Vi

and ∂Vj can be retrieved by solving a multidimensional Marchenko
equation (Wapenaar et al., 2014). The solution of this equation
yields, in addition to the surface-to-subsurface Green’s functions,
the so-called focusing functions at ∂Vi and ∂Vj. Focusing functions
are solutions of the wave-equation subject to specific focusing con-
ditions. In this section, we derive an alternative set of equations for
target-oriented redatuming that use focusing functions (rather than
the Green’s functions) as input.

Focusing functions

We distinguish two focusing functions, which we refer to as
f1ðx; xf;ωÞ and f2ðx; xf;ωÞ, where xf is defined as the focal point.
Both are functions of the spatial coordinate x and angular frequency
ω. They can be decomposed into downgoing and upgoing constitu-
ents, according to f1 ¼ fþ1 þ f−1 and f2 ¼ fþ2 þ f−2 . The focusing
functions are solutions of a source-free wave equation, i.e., equa-
tion 1 with q ¼ 0. The first focusing function is defined in a refer-
ence medium, which is identical to the physical medium above the
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focal point but reflection-free below this point. The downgoing part
of this focusing function fþ1 focuses at xf . Unlike the Green’s func-
tion, which is discontinuous at the source location xs, the focusing
function is continuous at the focal point, where the following focus-
ing condition is specified:

lim
z→zf

∂zfþ1 ðx; xfÞ ¼ −
jωϱ
2

δðx − xfÞδðy − yfÞ: (16)

Here, and in the derivations that follow, we omit the dependence
of the focusing functions on angular frequency for notational con-
venience. Because the half-space below the focal point is reflection-
free, the upgoing part of the focusing function f−1 and its vertical
derivative vanish at and below xf. The second focusing function f2 is
defined in another reference medium, which is identical to the physi-
cal medium below the focal point, but it is reflection-free above this
location. The upgoing part of this focusing function focuses, which is
enforced by the condition

lim
z→zf

∂zf−2 ðx; xfÞ ¼
jωϱ
2

δðx − xfÞδðy − yfÞ: (17)

The downgoing part of the second focusing function fþ2 ðx; xfÞ and
its vertical derivative vanish at and above the focal point because the
medium is nonreflective in this region. It can be derived that both
focusing functions are related to each other through the symmetry
relations fþ1 ðx; xfÞ ¼ f−2 ðxf; xÞ and f−1 ðx; xfÞ ¼ −fþ�

2 ðxf; xÞ (Wa-
penaar et al., 2014).

Focusing function representations at the upper
boundary

We start by deriving representations for the focusing function at
the upper boundary of the volume ∂Vi. In state A, we substitute the
focusing function p�

A ¼ f�2 ðx; xaÞ, where xa is a location at the
earth’s surface. In state B, we choose the same reference medium
as in the previous section, which is identical to the physical medium
inside V but reflection-free outside this volume. This leads to the
wavefields p�

B ¼ Ḡ�ðx; xiÞ, where the source xi is located on the
boundary ∂Vi in the limit from above (such that xi ∈= V). We find the
following representation of the convolution type after substitution
of these quantities into equation 4:

f−2 ðxi; xaÞ ¼
Z
∂Vi

dxdyfþ2 ðx; xaÞ
2H1

ωϱ
Ḡ−ðx; xiÞ

þ
Z
∂Vj

dxdyf−2 ðx; xaÞ
2H1

ωϱ
Ḡþðx; xiÞ: (18)

An equivalent representation of the correlation type follows by
substituting the wavefields into equation 5:

fþ�
2 ðxi; xaÞ ¼

Z
∂Vi

dxdyf−�2 ðx; xaÞ
2H1

ωϱ
Ḡ−ðx; xiÞ

þ
Z
∂Vj

dxdyfþ�
2 ðx; xaÞ

2H1

ωϱ
Ḡþðx; xiÞ: (19)

Note that these representations have the same structure as equa-
tions 9 and 10. This makes intuitive sense because the Green’s func-
tions and the focusing functions are solutions of the wave equation,
which can be extrapolated forward and backward with the Green’s
functions in the reference medium.

Focusing function representations at the lower
boundary

Equivalent representations can be derived for the focusing func-
tion at the lower boundary. To do so, we repeat the derivation of the
previous subsection with the source in state B at xj on the boundary
∂Vj in the limit from below (such that xj ∈= V). This leads to a rep-
resentation of the convolution type

fþ2 ðxj; xaÞ ¼
Z
∂Vi

dxdyfþ2 ðx; xaÞ
2H1

ωϱ
Ḡ−ðx; xjÞ

þ
Z
∂Vj

dxdyf−2 ðx; xaÞ
2H1

ωϱ
Ḡþðx; xjÞ; (20)

and a representation of the correlation type

f−�2 ðxj; xaÞ ¼
Z
∂Vi

dxdyf−�2 ðx; xaÞ
2H1

ωϱ
Ḡ−ðx; xjÞ

þ
Z
∂Vj

dxdyfþ�
2 ðx; xaÞ

2H1

ωϱ
Ḡþðx; xjÞ: (21)

Once again, the analogy with equations 11 and 12 is clear, mak-
ing target-enclosed redatuming with focusing functions in principle
a feasible objective, in the sense that we obtain a system of four
equations with four unknowns.

Inversion of the focusing function representations

Before we discuss the joint inversion of equations 18–21, we con-
sider a special case where the upper boundary is placed at the earth’s
surface; i.e., zi ¼ za. In this case, the first integral on the right side
of equation 20 vanishes, leaving us with

fþ2 ðxj; xaÞ ¼
Z
∂Vj

dxdyf−2 ðx; xaÞ
2H1

ωϱ
~Gþðx; xjÞ: (22)

Here, we have introduced ~Gþ as the Green’s function of an alter-
native reference medium, which is identical to the physical medium
above the lower boundary ∂Vj but reflection-free below this boundary.
To retrieve this Green’s function, we can discretize equation 22 as

fþja ¼ Aðf−jaÞϒR ~g
þ
jj; (23)

where we used the same function Aðx�kaÞ as before, which can be
computed in the frequency domain (see Appendix B) or in the time
domain (see Appendix C). This equation can be solved for ~gþjj, for
instance by least-squares inversion. This approach leads to a Green’s
function in a reference medium, which is reflection-free below the
lower boundary. These Green’s functions can be used to image targets
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from below (Ravasi et al., 2016). If we choose the upper boundary
below the earth’s surface, equations 22 and 23 are no longer valid.
However, we can still retrieve target-enclosed extended images by
solving the system of equations 18–21. This system can be discretized
as

0
BB@

f−ia
fþ�
ia
fþja
f−�ja

1
CCA¼

0
BBB@

AðfþiaÞϒR 0 Aðf−jaÞ
Aðf−�ia ÞϒR 0 Aðfþ�

ja Þ
0 Aðf−jaÞϒR AðfþiaÞϒT

0 Aðfþ�
ja ÞϒR Aðf−�ia ÞϒT

1
CCCA
0
@ ḡ−ii
ḡþjj
ḡþji

1
A:

(24)

Equation 24 is an alternative formulation that can be used to in-
vert for the Green’s functions in the reference medium. Although
this formulation seems different than the formulation based on the
Green’s functions (i.e., equation 15), we show later in this paper that
both formulations are intrinsically related, given that the Green’s
functions and focusing functions are retrieved by solving the multi-
dimensional Marchenko equation.

NUMERICAL EXAMPLES

In this section, we illustrate the theory with an example in a 2D
synthetic medium. We select an acquisition boundary Sa at the top
of the medium, and a target zone V with two enclosing boundaries
∂Vi and ∂Vj. We retrieve the Green’s functions and focusing func-
tions at the enclosing boundaries from reflection data at the acquis-
ition boundary by solving a multidimensional Marchenko equation.
These functions are used for target-enclosed redatuming by solving
the inverse problems in equations 15 and 24. Finally, we show how
the retrieved target-enclosed extended images can be used to image
the target volume from above and from below, as well as for two-
sided imaging.

The model

In Figure 2a, we show the 2D synthetic model, which we refer to
as the physical medium. We place 301 colocated sources and receiv-
ers every 10 m on a fixed grid at the acquisition boundary Sa, in-
dicated by the black line at z ¼ 0 m. Shot records are obtained by
finite-difference modeling with a flat-spectrum source wavelet and
a time sampling of 4ms. Two boundaries ∂Vi and ∂Vj are selected
at z ¼ 750 and 1500 m, respectively, enclosing the target zone. At
each boundary, we define an array that is sampled by 301 focal points
with 10 m spacing. Like the acquisition array at Sa, these arrays have
a finite length of 3000 m. For simplicity, the density is constant
throughout the medium (ϱ ¼ 1000 kgm−3). We emphasize that con-
stant density is not a fundamental assumption for the application of
the methodology. The multidimensional Marchenko equation can be
solved in media with arbitrary velocity and density contrasts (Brog-
gini et al., 2014; Singh and Snieder, 2017), which is equally true for
redatuming by inversion, given that the wavefields at the redatuming
boundaries are known (Wapenaar and van der Neut, 2010). It is re-
quired, however, that the medium properties cðxÞ and ϱðxÞ vary only
smoothly in the lateral direction at and around the redatuming boun-
daries. It is well-understood that discontinuity of the medium proper-
ties at these boundaries can complicate the numerical computation
of the square-root operators (Grimbergen et al., 1998). The effects
of such discontinuities on solving the multidimensional Marchenko

equation (Meles et al., 2016) and on redatuming by inversion (Ravasi
et al., 2015a) have been described in the existing literature, too. To
avoid these complications, we have designed the medium properties
to be constant at both redatuming boundaries. The consequences of a
complex overburden for (1) solving the multidimensional Marchenko
equation (van der Neut et al., 2015; Vasconcelos et al., 2015) and
(2) redatuming by inversion (Wapenaar and van der Neut, 2010; Rav-
asi et al., 2015a) have also been studied already. Because these con-
sequences are not directly relevant for our current objectives, we have
designed the part of the medium above ∂Vi to be relatively simple.
The target zone (which is selected from the Sigsbee model of Paf-
fenholz et al., 2002) and the part of the medium below ∂Vj are more
complex.
To retrieve the Green’s functions and focusing functions from the

multidimensional Marchenko equation, we require knowledge of
the direct wavefield as it propagates from the acquisition array at
Sa to the redatuming arrays at ∂Vi and ∂Vj. For this purpose, we
typically use a macro model of the propagation velocity (Broggini
et al., 2014). As a starting point, we compute wavefields by finite-
difference modeling in the exact medium and we separate the direct
components with a time gate. These direct wavefields are used to
solve the multidimensional Marchenko equation (Wapenaar et al.,
2014). We refer to the wavefields retrieved in this way as kinemat-
ically correct Green’s functions and focusing functions. To quantify
the effects of velocity mismatch in the target zone, we also compute
the approximate Green’s functions and the focusing functions. Un-
like the kinematically correct functions, these functions have been
retrieved using direct wavefields (which are also isolated with a
time gate) in a smooth model, as shown in Figure 2b. Because it
is well-understood that velocity errors above ∂Vi result in blurring
of the redatumed gathers, which is already described in the existing
literature (Broggini et al., 2014), we have chosen the part of the macro
model at greater than ∂Vi to be identical to the physical medium. The
medium properties of the target zone have been smoothed. The con-
sequence of using approximate Green’s functions and focusing func-

a)

x (m)

z 
(m

)

−1500 1500

0

750

1500

x (m)

z 
(m

)

b)

−1500 1500

0

750

1500

2000 2500m/s m/s

Figure 2. (a) Propagation velocity in the physical medium (the
color bar is shown in [b]). (b) Macro velocity model with color
bar. The black lines at z ¼ 0, 750, and 1500 m indicate arrays at
boundaries Sa, ∂Vi, and ∂Vj, respectively. The target zone is de-
fined as the part of the medium where z ∈ ½750; 1500 m�.
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tions instead of their kinematically correct counterparts is one of the
key issues that will be discussed later in this paper.
One of the 301 shot records that have been computed at z ¼ 0 is

displayed in Figure 3a. We can recognize the two reflectors above
∂Vi at tzo < 0.7 s, the target zone at 0.7 s < tzo < 1.4 s and the part
of the medium below ∂Vj thereafter. Here, we have defined tzo as
the two-way traveltime at zero offset. In Figure 3b, we show the
direct wavefield at ∂Vj, computed in the exact model and isolated
by a time gate. An analogous direct wavefield is computed at the
upper boundary ∂Vi. These wavefields are used to solve the multi-
dimensional Marchenko equation (Wapenaar et al., 2014), leading
to the required kinematically correct Green’s functions and focusing
functions at ∂Vi and ∂Vj. Later in the paper, we will also use the
approximate Green’s functions and focusing functions (computed
from direct wavefields in the macro model).

Target-enclosed redatuming

The multidimensional Marchenko equation is solved to retrieve
the kinematically correct Green’s functions and focusing functions
at the boundaries ∂Vi and ∂Vj. For this purpose, we have used the
reflection data and the direct wavefields from the acquisition boun-
dary Sa to the redatuming boundaries, which we have computed in
the physical medium. First, we analyze the retrieved transmission re-
sponses Ḡþðx; xiÞ with x ∈ ∂Vj. In Figure 3c, we show a shot record
with a source at the upper boundary ∂Vi and receivers at the lower
boundary ∂Vj. This record is computed in a reference medium, which
is homogeneous outside the target zone. This is the response that we
would ideally like to retrieve. The response has been amplified with a
factor of 20 to enhance diffracted arrivals. In Figure 3d, we show the

result that was retrieved by target-enclosed redatuming of the Green’s
functions (i.e., equation 15), which has also been enhanced by the
same factor of 20. We observe that the direct wavefield has been re-
trieved accurately, whereas the diffracted arrivals are underestimated.
This observation can be attributed to the fact that the forward-scat-
tered wavefield has not been included in the direct wavefield that we
used to solve the multidimensional Marchenko equation (van der
Neut et al., 2015). This can be improved by using a more complicated
direct wavefield, as shown by Vasconcelos et al. (2015).
Next, we analyze the retrieved reflection responses from above.

In Figure 4a, we show a shot record with a source at xi and receivers
at x ∈ ∂Vi, computed directly in the reference medium (i.e.,
Ḡ−ðx; xiÞ). In Figure 4b, we show the response Ĝ−ðx; xiÞ, which has
been retrieved by single-sided redatuming (i.e., inversion of equa-
tion 14), where we ran 25 iterations of LSQR. This methodology
has been referred to as multidimensional deconvolution, which has
been discussed extensively in the literature (Wapenaar and van der
Neut, 2010; Ravasi et al., 2015a). As discussed earlier, this meth-
odology yields the response of an alternative reference medium,
which is homogeneous above ∂Vi but identical to the physical
medium below this boundary (and below ∂Vj). Hence, the reflectors
below the lower boundary ∂Vj are also retrieved. These reflectors
are indeed clearly visible at tzo > 0.8 s in Figure 4b. Alternatively,
we can retrieve Ḡ−ðx; xiÞ by target-enclosed redatuming of the
Green’s functions or focusing functions (i.e., inversion of equation 15
or 24). We show the results after 25 iterations of LSQR in Figure 4c
and 4d. Note that the reflectors from below the lower boundary at
tzo > 0.8 s have indeed been suppressed by both schemes. More spe-
cifically: These reflectors can still be observed after 25 iterations in
Figure 4c, whereas they are absent in Figure 4d.
We can intuitively understand these observations from the nature

of both inverse problems. By applying the adjoint (indicated by
superscript †) of the forward operator to the left side of equation 15,
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Figure 3. (a) Reflection response with a source at x ¼ 0 at the ac-
quisition boundary Sa and receivers at the same boundary. (b) Direct
wavefield with a source at x ¼ 0 at Sa and receivers at ∂Vj, com-
puted by time gating the transmitted wavefield in the physical
medium. (c) Transmission response from above with a source at x ¼
0 at ∂Vi and receivers at ∂Vj, computed in the reference medium.
(d) Similar transmission response, obtained by target-enclosed reda-
tuming of the Green’s functions (i.e., inversion of equation 15). All
figures have been normalized with respect to their maximum value.
Panels (c and d) have been enhanced by a factor 20 and are clipped at
5% of the maximum value to emphasize weak arrivals.
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Figure 4. (a) Reflection response from above with a source at x ¼ 0
at ∂Vi and receivers at the same level, computed in the reference
medium. (b) Similar reflection response, retrieved by single-sided
redatuming of the Green’s functions (i.e., inversion of equation 14).
Similar reflection responses, retrieved by target-enclosed redatum-
ing of (c) the Green’s functions (i.e., inversion of equation 15) and
(d) focusing functions (i.e., inversion of equation 24). All figure
parts have been normalized with respect to their maximum value.
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we find as an initial estimate of the desired Green’s function:
ḡ−ii ≈ϒ†

RA
†ðGþ

iaÞg−ia þ ϒ†
RA

†ðG−�
ia Þgþ�

ia . In this estimate, the reflec-
tors below the target are retrieved mainly by crosscorrelation of pri-
mary upgoing reflections g−ia with the downgoing direct wavefield
by A†ðGþ

iaÞ. These reflectors should be removed during subsequent
iterations. Hence, the residual of these reflectors in Figure 4d de-
pends on the number of iterations and can be further reduced by
increasing this number. The situation is different for inverse prob-
lem 24. Because this problem depends on focusing functions only,
which are independent on the part of the medium below ∂Vj, these
reflectors will never appear in any iteration of the scheme.
Target-enclosed redatuming can also be used to retrieve the reflec-

tion response from below the target zone. As a reference, we place a
source at xj below the target in the reference medium and we com-
pute the response Ḡþðx; xjÞ at the lower boundary (see Figure 5a). In
Figure 5b, we show an equivalent resultGþðx; xjÞ, which is retrieved
by solving inverse problem 23 by 25 iterations of LSQR. This meth-
odology has been used before to image target structures from below
(Ravasi et al., 2016). As discussed earlier, this methodology yields a
response in an alternative reference medium, which is homogeneous
below ∂Vj, but identical to the physical medium above this level (and
above ∂Vi). Hence, the strong reflectors in the shallow part of the
medium (z < 1500 m), which cannot be observed in Figure 5a, are
clearly visible in Figure 5b (at tzo > 0.8 s). Target-enclosed redatum-
ing allows us to remove these reflectors from the gathers, as demon-
strated in Figure 5c and 5d. To obtain these results, we ran 25
iterations of LSQR on inverse problems 15 and 24. We observe that
the reflectors at tzo > 0.8 s are completely absent for the scheme that
is based on the Green’s functions (Figure 5c). For the scheme that is
based on focusing functions, however, these reflectors are still weakly
visible (Figure 5d).
To understand these observations intuitively, we consider the ini-

tial estimates that can be obtained by applying the adjoints of the
forward operators to the left sides of equations 15 and 24. For the
scheme that is based on focusing functions (equation 24), we find
for the initial estimate: ḡþjj ≈ϒ†

RA
†ðf−jaÞfþja þ ϒ†

RA
†ðfþ�

ja Þf−�ja . In
this initial estimate, the reflectors at tzo > 0.8 s are mainly retrieved
by the crosscorrelation of primary reflections in the downgoing fo-
cusing function fþja with the direct wave in the upgoing focusing
function by A†ðf−jaÞ. These reflectors should be removed during
subsequent iterations. Consequently, Figure 5d can be further im-
proved by increasing the number of iterations. For the scheme that is
based on the Green’s functions (equation 15), we find ḡþjj ≈ϒ†

RA
†

ðG−
jaÞgþja þ ϒ†

RA
†ðGþ�

ja Þg−�ja . Although the reflectors at tzo > 0.8 s

appear in this initial estimate (by crosscorrelations of internal multi-
ples in the downgoing Green’s function gþja with primary reflections
in the upgoing Green’s function by A†ðG−

jaÞ), these spurious arriv-
als are relatively weak and they are quickly suppressed in higher
order iterations.

Target-enclosed imaging

The reflection responses that have been retrieved can be used
to image the target zone from above or from below. This can be
achieved by propagating the redatumed wavefields backward into
the target zone with help of the macro model in Figure 2b, and cross-
correlating them with their associated source fields, which are propa-
gated forward in the same model. If we evaluate the crosscorrelation
at zero time at each image point in the model, an image can be cre-
ated. We refer to the result as a linear image because only primary

reflections are considered (Claerbout, 1971; Berkhout, 1980). In Fig-
ure 6a, we show a linear image of the target zone, where we used the
redatumed reflection response from above, as retrieved from the kin-
ematically correct focusing functions. Because all interactions with
the part of the medium below the target zone arrive after the deepest
reflection in the image, this result is almost similar to a conventional
Marchenko image, as defined by Wapenaar et al. (2014). Because
various authors have already compared Marchenko images (such
as in Figure 6a) with the results from standard imaging methods
(Broggini et al., 2014; Wapenaar et al., 2014), we consider such a
comparison superfluous herein. Instead, we consider Figure 6a as
a reference image to be compared with the results from alternative
imaging strategies. In Figure 6b, we show a linear image, where we
used the redatumed reflection response from below (which we also
retrieved from the kinematically correct focusing functions). This im-
age has been multiplied by −1, such that it has the same polarity as
the image from above. Because all interactions with the part of the
medium above the target zone arrive after the shallowest reflection in
the image, this result is almost similar to a Marchenko image from
below, as defined by Ravasi et al. (2016). Note that the images from
above and below are slightly different from each other. For instance,
some of the point diffractors at z ¼ 940 m have been shifted down-
ward in Figure 6b in relation to Figure 6a, where they are more
accurately positioned. We also note that some reflectors are misposi-
tioned in the image from below and have a different signature com-
pared with the image from above. One example is highlighted by a
black circle in the figure parts. To understand these differences, we
should realize that the velocity model that is used to solve the Mar-
chenko equation (the physical medium) is different from the velocity
model that is used for imaging (the macro model). The situation is
different if we use the approximate focusing functions, rather than
the kinematically correct focusing functions, for redatuming. For this
scenario, the linear images from above and below are highly similar
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Figure 5. (a) Reflection response from below with a source at x ¼ 0
on ∂Vj and receivers on the same level, computed in the reference
medium. A similar reflection response, retrieved by single-sided re-
datuming of focusing functions (i.e., inversion of equation 23). Sim-
ilar reflection responses, retrieved by target-enclosed redatuming of
the (c) Green’s functions (i.e., inversion of equation 15) and (d) fo-
cusing functions (i.e., inversion of equation 24). All figure parts
have been normalized with respect to their maximum value.
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(see Figure 6c and 6d). The only slight difference that can be observed
is that in the image from below we have lost resolution at the sides of
the model compared with the image from above (note, for instance,
the leftmost and rightmost point diffractors at z ¼ 940 m).

With detailed subsurface models becoming more easily available
in geophysics, the use of these models in seismic imaging is starting
to be explored (Valenciano and Chemingui, 2015). By propagating
wavefields backward in a detailed subsurface model, rather than in a

smooth macro model, and crosscorrelating them
with their associated source fields in the detailed
model, we can image the primary reflections and
internal multiples to improve seismic resolution
(Youn and Zhou, 2001; Malcolm et al., 2009; Vas-
concelos et al., 2010). Because internal multiples
are used in this image, this strategy has also been
referred to as nonlinear imaging (Fleury and Vas-
concelos, 2012; Ravasi et al., 2014). Figure 7 is
equivalent to Figure 6, apart from the fact that im-
aging has been conducted in the physical medium.
Note that Figure 7a and 7b is highly similar be-
cause the same model is used for redatuming
and for imaging, whereas Figure 7c and 7d is dif-
ferent because a different model is used for reda-
tuming than for imaging. Steep dips such as faults
have been imaged more accurately in Figure 7a
compared with Figure 6a, confirming the value
of internal multiples to improve seismic resolution
as claimed in the literature on nonlinear imaging
(Ravasi et al., 2015b).
Because we have retrieved not only the reflec-

tion responses from above and below, but also the
transmission response of the target, we might as
well propagate the wavefields back into the target
zone from the upper and the lower boundaries. By
crosscorrelating these back-propagated wavefields
with forward-propagated source fields from the
same two boundaries, we can evaluate a two-sided
nonlinear imaging condition (Ravasi et al., 2014).
Unlike in the previous images, the reflection re-
sponses and the transmission responses contribute
to this result. The contribution from the transmis-
sion responses is shown in Figure 8a. To obtain
the two-sided nonlinear image, this image should
be added to the nonlinear images from above (i.e.,
Figure 7a) and from below (i.e., Figure 7b with
reversed polarity), yielding the image in Figure 8b.
Note the superior image quality that can be
achieved by this procedure, provided that an ac-
curate subsurface model is available. We conclude
this section with Figure 8c and 8d, which are
equivalent to Figure 8a and 8b, apart that approxi-
mate rather than kinematically correct focusing
functions have been used for target-enclosed reda-
tuming. We observe that these images are slightly
defocused, which can once again be understood
from the fact that a different velocity model has
been used for redatuming than for imaging.

DISCUSSION

In this section, we address a few questions that
have arisen from the observations in the previous
section. First, we compare the target-enclosed re-
datuming scheme that is based on Green’s func-
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Figure 6. Linear images of the target from (a) above and (b) below after redatuming
with kinematically correct focusing functions. The black circles highlight a reflector
that is discussed in the main text. Linear image of the target from (c) above and (d) below
after redatuming with approximate focusing functions. Here, linear imaging is defined as
imaging of primary reflections in the macro model. The images from below have been
multiplied with −1 such that all images have the same polarity.
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Figure 7. Nonlinear images of the target from (a) above and (b) below after redatuming
with kinematically correct focusing functions. Nonlinear images of the target from
(c) above and (d) below after redatuming with approximate focusing functions. Here,
nonlinear imaging is defined as imaging in the physical medium. The images from be-
low are multiplied with −1, such that all images have the same polarity.
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tions to the scheme that is based on focusing functions. Then, we
discuss whether images that are generated “from below” carry addi-
tional information compared with the images that are generated
“from above.” Finally, we discuss the value of target-enclosed re-
datuming for linear versus nonlinear imaging.

Green’s functions or focusing functions?

We have derived a target-enclosed redatuming scheme that is based
on Green’s functions and an alternative scheme that is based on fo-
cusing functions. The scheme that is based on Green’s function seems
most straightforward in cases in which physical measurements are
obtained at the redatuming levels, for instance, by deploying seismic
receivers in boreholes (Byun et al., 2010). But which scheme is to be
preferred if the Green’s functions and focusing functions are retrieved
by solving the multidimensional Marchenko equation? In that case,
the wavefields are intrinsically related by the following fundamental
representation of the convolution type (Wapenaar et al., 2014):

G−ðxi;xaÞ¼fþ�
2 ðxi;xaÞþ

Z
Sa

dx0dy0Rðx0;xaÞf−2 ðxi;x0Þ;

(25)

and by an equivalent representation of the correlation type:

Gþðxi;xaÞ¼f−�2 ðxi;xaÞþ
Z
Sa

dx0dy0Rðx0;xaÞfþ2 ðxi;x0Þ;

(26)

where Sa is the acquisition boundary at z ¼ 0 and xa ∈ Sa. In this
representation, Rðx 0; xaÞ ¼ ½2H1G−ðx 0; xaÞ�∕ωρ should be inter-
preted as the reflection response at Sa. When we solve the multidi-
mensional Marchenko equation, we retrieve the upgoing and
downgoing focusing function f�2 from this reflection response and
an estimate of the direct wavefield as it propagates
in the macro model. In a secondary step, the
upgoing and downgoing Green’s functions are
computed by evaluation of equations 25 and 26
(Wapenaar et al., 2014). Hence, these equations
can be used to express our estimates of the Green’s
functions directly in terms of our estimates of the
focusing functions. If we substitute equations 25
and 26 into Green’s function representation 9, it
follows that

Z
Sa

dx0dy0Rðx0;xaÞf−2 ðxi;x0Þþfþ�
2 ðxi;xaÞ

¼
Z
∂Vi

dxdy

�
f−�2 ðxi;xaÞ

þ
Z
Sa

dx0dy0Rðx0;xaÞfþ2 ðxi;x0Þ
�
2H1

ωϱ
Ḡ−ðxi;xiÞ

þ
Z
∂Vj

dxdy

�
fþ�
2 ðxj;xaÞ

þ
Z
Sa

dx0dy0Rðx0;xaÞf−2 ðxj;x0Þ
�
2H1

ωϱ
Ḡþðxj;xiÞ:

(27)

The exact same result can be obtained from the
focusing function representations by convolving

equation 18 (with xa replaced by x 0) with Rðx 0; xaÞ, integrating
x 0 and y 0 over Sa and adding equation 19. Hence, equation 9 can
be interpreted as a linear superposition of equations 18 and 19 (given
that all wavefields are retrieved by the multidimensional Marchenko
equation). With an equivalent derivation, we can show that equa-
tion 10 is also a linear superposition of equations 18 and 19, whereas
equations 11 and 12 are linear superpositions of equations 20 and 21.
Consequently, all rows of the matrix in equation 15 can be con-
structed by linear superpositions of the rows of the matrix in equa-
tion 24. Hence, it can be concluded that no additional information is
used in the scheme with the Green’s functions, compared with the
information that is embedded in the focusing functions. It is ob-
served, though, that with 25 iterations of LSQR, the two schemes
lead to different results (compare for instance Figure 4c with 4d
or 5c with 5d). It can be reasoned that reorganizing the rows as
in equation 15 (compared with the rows in equation 24) acts as a
preconditioner to the inverse problem, which explains our observa-
tions. Because the focusing functions are independent on the part of
the medium below ∂Vj, we conclude that both redatuming schemes
are independent on this part of the medium. We emphasize that this is
not the case when physical recordings are being used, such that the
complexities below the lower array can enrich the wavenumber con-
tent of the upgoing wavefield, with a potential to improve the seismic
resolution (Schuster, 2009). Because equation 15 can be derived from
equation 24 by applying a preconditioning matrix (although the in-
verse of this matrix may not exist), we consider equation 24 to be the
most natural starting point for inversion.

Imaging from above or below?

At this point, we have shown that the redatumed data depend only
on the focusing functions, which are independent on the medium
properties below the target volume. When we study the mechanism
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Figure 8. (a) Nonlinear transmission image and (b) two-sided nonlinear image after
redatuming with kinematically correct focusing functions. (c) Nonlinear transmission
image and (d) two-sided nonlinear image after redatuming with approximate focusing
functions. Here, nonlinear imaging is defined as imaging in the physical medium.
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by which the individual events of the focusing functions are being
constructed, it is observed that we can only retrieve events within
the spatial bandwidth that is illuminated by the direct wavefield (van
der Neut et al., 2015). Hence, the retrieved reflection response from
below can never illuminate a reflector in the target zone under a
specific angle if this reflector is not illuminated under the same an-
gle from above. Consequently, the linear image from below does not
contain additional information compared with the image from
above. This statement is backed by the images in Figure 6c and 6d
or 7a and 7b, where illumination from below does not seem to bring
any sign of improvement (despite the fact that the point diffractors
in the deeper part of the medium in Figure 2a enhance the wave-
number content of the reflected wavefield). This may be improved,
though, by using a more developed direct wavefield, which includes
forward-scattered arrivals, to solve the multidimensional Marche-
nko equation (Vasconcelos et al., 2015). Such modification is be-
yond the scope of this paper.
As mentioned before, we observe a slight deterioration in the im-

ages from below, compared with the images from above. To under-
stand these observations intuitively, we should realize that redatuming
acts as a spatial filter to the data (Wapenaar and van der Neut, 2010).
Because this filter is narrower for the deep array at ∂Vj than for the
shallow array at ∂Vi, the resolution that can be achieved from the
shallow array will always be equal to or superior to the resolution
that can be achieved from the deep array. Once more, we emphasize
that the situation is different when physical receivers are deployed at
the lower boundary. In this case, the reflected wavefield from below
the target has the potential to enrich the illumination in the image
from below, as discussed before. Moreover, the kinematic variations
in Figure 6a and 6b confirm previous studies with physical receivers
in boreholes (Liu et al., 2016) and could be used to update the propa-
gation velocity model, as suggested elsewhere in the literature (Ravasi
et al., 2015b). When the multidimensional Marchenko equation is
used to retrieve the wavefields at the lower array, such velocity up-
dates seem impossible, as confirmed by Figure 6c and 6d, where kin-
ematic variations cannot be observed.

Linear or nonlinear imaging?

By single-sided redatuming from above (i.e., inversion of equa-
tion 14), one can separate all reflections that occur below a specified
boundary from all orders of interaction with the part of the medium
above that boundary. This kind of redatuming has proven useful to
eliminate multiple reflections from the shallow subsurface that can
interfere with primary (and multiple) reflections from deeper targets
(Wapenaar and van der Neut, 2010; Ravasi et al., 2015a). Hence,
this approach is relevant for linear and nonlinear imaging of a target
volume that is buried below strong shallow heterogeneities. Equiv-
alently, one can separate all reflections that occur above a specified
boundary from all orders of interaction below that boundary by sin-
gle-sided redatuming from below (i.e., inversion of equation 23)
(Ravasi et al., 2016). This strategy can be used to eliminate reflec-
tions from below a target volume, for instance, deep salt body re-
flections in seismic imaging (Jones and Davison, 2014) or the chest
wall reflection in ultrasonic breast imaging (Ozmen et al., 2015).
Because reflections from below the volume arrive after the latest pos-
sible primary reflections from inside the volume (whose traveltimes
can be directly computed from the macro model), the primary reflec-
tions from inside the volume can also be isolated from deeper reflec-
tions by truncating the reflection records in time. Hence, single-sided

redatuming from below has limited applications for linear imaging
processes, which rely on primary reflections only. However, trunca-
tion is insufficient to isolate multiple reflections inside the volume
that may interfere with (primary and multiple) reflections from below
the volume. Therefore, single-sided redatuming from below seems
especially relevant if multiple reflections are included in the retrieved
response, which is important to image nonlinearity inside the target
volume. Similar statements can be made about target-enclosed reda-
tuming. If linear imaging inside a target volume is our objective, the
target-enclosed scheme offers little benefits over single-sided reda-
tuming from above with the relevant truncations. However, if we
strive for nonlinear imaging, the developed methodology offers the
potential to separate all orders of reflections inside the volume from
the interactions with other parts of the medium.
By retrieving target-enclosed extended images, the original data

set, which is recorded in infinite space, can be transformed into a
smaller virtual data set. Because the virtual data are dependent on
the medium parameters of a limited, finite volume only, it is specu-
lated that the computational costs of local inversion for the medium
properties inside the target volume can be reduced significantly. Be-
sides virtual reflection responses, we also retrieve virtual transmis-
sion responses of the target volume. As we have demonstrated in
Figure 8b, the retrieved reflection and transmission responses can
be combined to evaluate novel imaging conditions that rely on
closed boundary representations (Ravasi et al., 2014), leading to
superior seismic resolution. To benefit from these, it is crucial that
multiple reflections are included in the redatumed responses, which
we have achieved by solving the inverse problems derived herein.

CONCLUSION

We have derived two inversion schemes to retrieve target-enclosed
extended images. The first scheme requires as input a set of Green’s
functions with sources at a single acquisition boundary at the earth’s
surface and receivers at two boundaries in the subsurface, selected
above and below a specified target volume. These Green’s functions
can either be recorded, modeled, or computed from the multidimen-
sional Marchenko equation. The second scheme requires focusing
functions (which are also obtained from the multidimensional Mar-
chenko equation) with focal points at the acquisition boundary and
receivers at the two target-enclosing boundaries. The output of both
schemes consists of (1) a reflection response at the upper boundary
from above, (2) a reflection response at the lower boundary from be-
low, and (3) the transmission response of the target volume.
The redatumed data can be used to image the target volume from

above or from below. If the redatuming input is computed with the
multidimensional Marchenko equation, it can be shown that both
redatuming schemes are based on the same equations and are inde-
pendent on the part of the medium below the target volume. In this
case, the images from above and below are similar. If the redatuming
input is measured (for instance, by boreholes in the subsurface), it is
speculated that reflections from below the target may enhance illu-
mination and consequently improve the resolution. In this case, the
images from below and above are different, given that the velocity
model that is used for imaging is inaccurate. This offers opportunities
for updating the velocity model in cases where physical receivers are
deployed inside the subsurface. We emphasize that such updates are
not possible if the redatuming input is computed from the multidi-
mensional Marchenko equation.
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The redatumed data contain all linear and nonlinear interactions
inside the target volume but excludes all interactions from outside.
Hence, these data can be valuable input to invert for medium proper-
ties in a specified target volume. Because the redatumed data depend
on a limited number of medium parameters only, the computational
burden of “local” inversion is expected to be significantly less than
the burden of an equivalent “global” inverse problem. As we have
transformed single-sided reflection data into virtual data with sources
and receivers at two enclosing boundaries, the redatumed data can
also be used to evaluate novel imaging conditions that are derived
from closed-boundary representations. We have shown that seismic
images with superior resolution can be generated in this way (com-
pared with the results of linear imaging). We emphasize that the gen-
eration of such images is only possible if an accurate model of the
target volume is available.
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APPENDIX A

DISCRETIZED SQUARE-ROOT OPERATOR

In this appendix, we discuss how the square-root operatorH1 can
be computed numerically. We consider an arbitrary wavefield pk at
a depth level ∂Vk (with k ¼ i or k ¼ j) at a particular frequency,
which is discretized as a column vector, where each sample repre-
sents a spatial location. The (modified) Helmholtz operator H2 at
level ∂Vk is discretized as matrix H2k, which acts at the wavefield,
according to H2kpk. The required matrix can be obtained by discre-
tizing equation 2 as

H2k ¼ ω2C−2
k þ PkΔP−1

k Δ; (A-1)

where Ck and Pk are the diagonal matrices with velocities and den-
sities at ∂Vk, respectively, which we assume to be (approximately)
known at the redatuming boundaries. Further, Δ is a first-order fi-
nite-difference operator. The square-root operator H1k can be com-
puted by eigenvalue decomposition of matrix H2k (Grimbergen
et al., 1998), according to H2k ¼ LkΛkL−1

k , where Λk is a diagonal
matrix with eigenvalues and Lk is a matrix with eigenvectors. The
square-root operator is obtained by taking the square roots of the
eigenvalues and recomputing the matrix: H1k ¼ LkΛ

1∕2
k L−1

k . In a
similar way, the inverse of the square-root operator can be computed
as H−1

1k ¼ LkΛ
−1∕2
k L−1

k . Akin to the discretized Helmholtz operator,

the discretized square-root operator and its inverse can be applied
directly to the wavefield pk, according to H1kpk and H−1

1k pk.

APPENDIX B

FREQUENCY-DOMAIN IMPLEMENTATION

In this appendix, we show how the matricesAðx�kaÞ (with x ¼ G or
x ¼ f, and k ¼ i or k ¼ j) that appear in this paper can be computed
in practice for an arbitrary wavefield x�ka. Here, we assume that all
equations are evaluated in the frequency domain at a particular fre-
quency ω. For equivalent representations in the time domain, see Ap-
pendix C. By comparing equations 13 and 14 (with x�ka ¼ Gþ

ia), it is
not hard to see that matrix Aðx�kaÞ can be written as

Aðx�kaÞ ¼
2

ω
P−1
k Mðx�kaÞH1k; (B-1)

where Mðx�kaÞ is a matrix for multidimensional convolution with the
wavefield x�ka, H1k is the discretized square-root operator (see Ap-
pendix A), and P−1

k is a block-diagonal matrix with the inverse den-
sities (all quantities are evaluated with properties along boundary
∂Vk). Equation B-1 can also be applied to compute all other matrices
Aðx�kaÞ in this paper.

APPENDIX C

TIME-DOMAIN IMPLEMENTATION

To construct a matrix Aðx�kaÞ for multidimensional convolution
with an arbitrary wavefield x�ka in the time domain, we modify equa-
tion B-1 in the following way:

Aðx�kaÞ ¼ F−1
o Bð2ω−1P−1

k Mðx�kaÞH1kÞFoϒH; (C-1)

where Fo is a matrix for temporal Fourier transformation and F−1
o is

its inverse. Furthermore, we have defined BðYðωÞÞ to compute a
block-diagonal matrix, where each block contains matrix YðωÞ ¼
2ω−1P−1

k Mðx�kaÞH1k at the corresponding frequency ω. Unlike
equation B-1, which can be applied to an individual frequency slice,
our formulation in the time domain requires that all time samples are
considered. However, this formulation allows us to enforce that the
solution is causal. In equation C-1, we have done so by including
matrix ϒH, which passes only causal entries.
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