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Abstract The spatial heterogeneity along a fracture is a key determinant for fracture-associated
mechanical and hydraulic properties of the subsurface. Laboratory experiments have been performed
to test the applicability of the nonwelded interface representation to predict the frequency- and
angle-dependent elastic response of a single fracture. The observation that nonwelded interface model
can represent quite well the frequency- and angle-dependent reflection response of a fracture has led us
to develop a new methodology for estimating the spatially heterogeneous fracture compliance from the
reflection response along a fracture surface. A data-driven approach based on Marchenko equation coupled
with inverse scattering to solve the nonwelded interface boundary condition has been formulated. The
approach estimates the elastic wavefield along a fracture accurately, including the multiple reflections.
As an extension, it offers the possibility to estimate fracture compliance using the multiple reflections.
We illustrate the concept by numerically modeling 2-D SH waves sensing the heterogeneous tangential
compliance of a fracture. The stationary phase method is applied to single and double spatial integrals to
analyze the effect of source and receiver aperture on the Green’s function retrieval. Our results show that the
use of multiple reflections allows a better estimation of the heterogeneous fracture compliance than using
primary reflections alone, especially for the far offsets on the fracture plane.

1. Introduction

Fractures are ubiquitous in solid materials including Earth materials. Small-scale fractures like cracks and
large-scale fractures like joints and faults are key structures that determine the mechanical resistance and the
fluid transport properties of rocks. The mechanical properties of a fracture are described by its elastic compli-
ances, which are primarily controlled by the surface roughness (asperity distribution) and the aperture of the
fracture [e.g., Brown and Scholz, 1985; Cook, 1992]. Furthermore, studies in the past have illustrated the link of
fracture compliances to stress field and fluid flow properties [e.g., Hopkins et al., 1987; Pyrak-Nolte and Morris,
2000]. Characterizing fracture compliances is, therefore, crucial in addressing the mechanical, hydraulic, and
transport properties of a fractured subsurface.

Although earlier studies characterized fractured reservoirs considering the elastic compliance of a fracture to
be spatially homogeneous, the spatially varying nature of the fracture compliance was observed previously
in laboratory experiments [Pyrak-Nolte and Nolte, 1992]. Oliger et al. [2003] and Acosta-Colon et al. [2009] also
showed that mineral precipitation or stress distribution changes the local transmission response of elastic
waves along a fracture plane, illustrating spatially varying nature of fracture compliances. Knowledge of the
spatial variation of the elastic compliance of a fracture is important in order to determine the heterogeneous
mechanical and hydraulic properties, e.g., evaluating the preferred fluid flow direction through the fracture
or in the fractured medium.

Because seismic waves are sensitive to the mechanical properties of a fracture, seismically sensing and
characterizing the fracture compliances is a promising approach [Knight et al., 2010]. For this purpose, the
nonwelded interface model or the linear-slip boundary representation for fractures [e.g., Schoenberg, 1980;
Baik and Thompson, 1984; Pyrak-Nolte et al., 1990] considers a fracture to be a thin soft layer. It is then effec-
tively represented as an interface across which the seismic stress is continuous, but the displacement is
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discontinuous, controlled by the fracture compliances. The boundary condition at a nonwelded interface is
represented as, [

u1

]
= 𝜂T𝜏13, (1)

[
u2

]
= 𝜂T𝜏23, (2)

[
u3

]
= 𝜂N𝜏33, (3)

where ui and 𝜏ij are, respectively, the seismic displacement and the stress field in the Cartesian coordinates,
the brackets indicates the jump or discontinuity across the fracture interface assumed here to be in x1 − x2

plane, and 𝜂N and 𝜂T are normal and tangential compliances, respectively.

The normal and tangential compliances are functions of the properties of the thin layer. Baik and Thompson
[1984] approximated the seismic response of a thin, smooth welded layer by a nonwelded interface. Hudson
et al. [1997] derived the normal and tangential compliances from the random distribution of asperity when
the two rough fracture surfaces are coupled. These models can be written as follows [Worthington and Lubbe,
2007; Choi et al., 2014]:
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where VP , VS, and 𝜇 are, respectively, P wave velocity, S wave velocity, and the Lamé constant of the host
material (rock without fracture), a is the mean radius of the contact areas (asperities), rw is the proportion of the
fracture surface area that is in contact,𝜇′ and 𝜆′ are the Lamé constants of the fracture infill, andΔ is the mean
aperture of the fracture. The first terms of equations (4) and (5) indicate the effect of the asperity distribution
due to coupled rough surfaces, and the second terms indicate the effect of the thin, smooth welded layer. From
these equations, one can see that estimation of the fracture compliances is useful for further understanding
on asperity distribution, fracture aperture, and infill materials. The review of various fracture models using a
nonwelded interface can be found in Liu et al. [2000].

In this study, we consider reflections from a nonwelded interface and also scattered waves due to the het-
erogeneity in compliance along the fracture. The assumption is that the elastic wavelength is larger than the
thickness of the fracture and larger than the spacing between the asperities of contact, but the wavelength
is shorter than the lateral extent of the fracture [Gu et al., 1996; Pyrak-Nolte and Morris, 2000]. Although the
nonwelded interface model has been extensively used in laboratory scale measurements [Nagy, 1992], the
concept is highly general; any weak zone that is small with respect to the seismic wavelength can be charac-
terized as a nonwelded interface. This representation should also be useful for in situ measurements of the
compliances of large-scale fractures in the subsurface, e.g., joints and faults, as low-frequency seismic waves
offer large wavelengths and long penetration distances. In this vein, the plane-wave reflection/transmission
response of a nonwelded interface was studied earlier for rock joints [e.g., Cook, 1992; Li et al., 2014] and
macroscopic faults [e.g., Worthington and Hudson, 2000; Kame et al., 2014].

In situ direct measurements of fracture compliances are sparse (see references in Worthington and Lubbe
[2007]). Worthington and Hudson [2000] analyzed the anomalous attenuation (Q) observed in the vertical seis-
mic profiling transmission response and discussed the viability of the nonwelded interface representation of
geological faults. Reshetnikov et al. [2010] presented evidences that reflected seismic waves from a fracture
were observed in the field where there was no lithological boundary predicted by logging data. However,
there are no attempts made so far to characterize the spatial heterogeneity along the fractures. Recently,
we proposed a new approach to estimate heterogeneous fracture compliances using the scattered waves
measured at the Earth’s surface, which is suitable for in situ evaluation [Minato and Ghose, 2013, 2014a]. The
approach involves measurement of the spatial change of the scattered waves from a nonwelded interface
(fracture) using a receiver array, extrapolating the wavefield at the fracture, and then solving the boundary
condition to estimate the fracture compliance. This method involves two steps: (1) locating the position of
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the fracture and (2) estimating the stress field along the fracture to solve the nonwelded-interface bound-
ary condition. With a homogeneous background medium, it has been shown that the imaging (step 1) and
the wavefield estimation along a fracture (step 2) are possible using the backpropagation of the reflection
responses. However, for a more complex background medium a new methodology is required to handle accu-
rately the effect of multiple reflections. To meet this need, a nonlinear imaging condition was earlier derived in
order to image accurately the single and multiple fractures using multiply scattered waves [Minato and Ghose,
2014b, 2015].

Recently, Wapenaar et al. [2014a, 2014b] and Broggini et al. [2014] have presented a new method for retriev-
ing the Green’s function inside a medium using reflection responses at the surface of the Earth. The method
solves the Marchenko equation and constructs the Green’s function including the multiple reflections. We
have made an extension of this method in order to characterize the heterogeneous fracture compliance,
because this enables estimating the elastic wavefield along the fracture plane (step 2) accurately, handling
the multiple reflections, without requiring the detailed subsurface information. Furthermore, it provides us
with a possibility of characterizing the heterogeneous fracture compliance using the multiple reflections—in
addition to the primary reflections, which is greatly advantageous but which has not been possible
so far.

In this article, we first present the results of laboratory experiments to measure frequency- and angle-
dependent seismic reflection responses of a simulated fracture and to examine the validity of the nonwelded
interface representation. The frequency- and angle-dependent reflections will be used in estimating the
spatially heterogeneous fracture compliances. Next, we briefly discuss the new data-driven Green’s function
retrieval approach and the use of inverse scattering to estimate the heterogeneous fracture compliances.
We illustrate numerically the efficacy of this new approach. Finally, we examine the effect of source and
receiver aperture on the Green’s function retrieval by using the method of stationary phase. In the sections
of data-driven Green’s function retrieval and the application to numerically modeled data, we consider 2-D
SH wave because (1) in this case the elastic wavefield senses the tangential component of the fracture com-
pliance (tangential compliance, 𝜂T ) and (2) the simple scalar wavefield offers the essential insights regarding
this new concept.

2. Frequency- and Angle-Dependent Reflection Coefficient of a Fracture:
Laboratory Tests of a Nonwelded Interface Model

Our goal is to develop an approach for in situ characterization of heterogeneous fracture compliance in the
Earth making use of frequency- and angle-dependent reflection responses of a nonwelded interface. Despite
its broad implication, the concept of angle-dependent reflections from a nonwelded interface is not yet well
utilized in order to characterize fracture compliances. The majority of laboratory experiments so far have used
normal-incident seismic waves. The nonwelded interface model is applied to macroscopic faults, but only
normal incident waves are considered [Worthington and Hudson, 2000; Kame et al., 2014]. A few earlier studies
that have considered oblique incidence are especially for nondestructive material testing [e.g., Margetan et al.,
1988; Liaptsis et al., 2006; Nam et al., 2012] and not for fractured rock characterization.

In this section, we shall investigate the frequency- and angle-dependent reflection coefficients and the effi-
cacy of the nonwelded interface model through laboratory experiments. It will also show the advantage
of using the nonwelded interface model: the measurement using a large seismic wavelength can handle
correctly the frequency- and angle-dependent reflections from a thin, soft layer. We consider here P wave
reflection due to P wave incidence.

Figure 1 illustrates our experimental setup consisting of two aluminum blocks with parallel and smooth sur-
faces (VP = 6380 m/s, VS = 3150 m/s, and 𝜌 = 2700 kg/m3). An artificial horizontal fracture is simulated by
installing spacers (copper foils) of known thicknesses between the two blocks. We use four longitudi-
nal transducers (Panametrics V103) for an array measurement (one transmitter and three receivers). The
source-receiver offsets are 3.5, 7.0, and 10.5 cm, which provide the incident angles at the fracture (𝜃) of 5.8∘,
11.5∘ and 17.0∘, respectively. The central frequency of the source signal is 1 MHz. Figures 2a–2c show the
measured reflection responses (PP reflection) from 100 μm thick fracture for dry condition (air-filled) and wet
condition (fracture is filled with the mixture of water and hair gel). One can see the notable difference between
the dry and wet conditions.
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Figure 1. Experimental setup for measuring angle-dependent reflections from a fracture.

Figure 2. Observed reflection amplitudes from a simulated fracture under dry (air-filled) and wet (water-filled)
condition. Three incident angles are considered for (a–c) 100 μm thick fracture and (d–f ) 150 μm thick fracture. The
nonwelded interface model predicts the theoretical response of the wet fracture assuming the normal compliance to be
𝜂N = 4.55 × 10−14 m/Pa for Figures 2a–2c, and 𝜂N = 6.82 × 10−14 m/Pa for Figures 2d–2f.
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Figure 3. Theoretical reflection coefficients for 100 μm thick wet fracture (𝜂N = 4.55 × 10−14 m/Pa) and dry fracture
(𝜂N = 7.04 × 10−10 m/Pa) for three angles of incidence.

The fracture in this experiment can be considered as a thin layer, with parallel boundaries, filled with a fluid. We
assume the fracture compliance to be spatially invariant. In this case, the normal compliance (𝜂N) of the non-
welded interface is described by the second term in equations (4) and (5), which predicts 𝜂N of the wet fracture
and the dry fracture to be 4.55 × 10−14 m/Pa (using the value of the bulk modulus of water as 2.2 × 109 Pa)
and 7.04 × 10−10 m/Pa (with the bulk modulus of air as 1.42 × 105 Pa), respectively. Note that the tangen-
tial compliance (𝜂T ) is infinitely large due to the vanishingly small shear modulus of fluids. In Appendix A, we
show the theoretical reflection coefficients of a nonwelded interface (equation (A1)). The theoretical values
of the frequency- and angle-dependent reflection coefficients are calculated for different incidence angles
(Figure 3) using the values of the normal compliance (𝜂N) of dry and wet fractures. One can see that the reflec-
tion coefficients are complex-valued functions of angle and frequency, which also causes a phase difference
between incident and reflected waves. Note that due to the very large value of the normal compliance for a
dry fracture (four order larger than that of a wet fracture), the dry fracture shows the highest frequency limit,
i.e., it is sensed as a free surface whose reflection coefficients are not frequency dependent, and the reflection
has an opposite polarity compared to the incident wave.

We use the reflection responses of the dry fracture (DDry) as a reference, and we predict the reflection
responses of the wet fracture (DWet) using the following relation in the frequency domain:

DWet =
RWet

PP

RDry
PP

DDry, (6)

where RWet
PP and RDry

PP are, respectively, the reflection coefficients (equation (A1)) of the wet fracture and the
dry fracture (Figure 3). In this way, we mitigate the error due to the source directivity and the difference in
receiver coupling. One can see that the nonwelded interface representation is remarkably accurate to predict
the frequency- and angle-dependent reflection responses of a wet fracture (red lines in Figures 2a–2c). It also
shows that through nonwelded interface representation, a large seismic wavelength (approximately 6.3 mm
in this experiment) can correctly handle the reflection responses of a thin (100 μm) soft layer. Figures 2d–2f
show the reflection responses from a thicker (150 μm) fracture. One can see that the reflection amplitude and
phase of the wet fracture are different from those for the 100μm thick fracture. Again, the nonwelded interface
representation (𝜂N = 6.82 × 10−14 m/Pa) predicts the response very accurately. This laboratory validation
justifies solving the linear-slip boundary condition for the frequency- and angle-dependent elastic wavefield
along the fracture plane by a new approach, which will be discussed in the next section.

3. Theory

In this section, we will develop a new approach to characterize the heterogeneous fracture compliance using
primary and multiple reflections, without using the detailed knowledge of the subsurface structure between
the measurement surface and the fracture plane. We first illustrate the data-driven Green’s function retrieval,
and next we show the inverse scattering approach to characterize the heterogeneous fracture using the
retrieved Green’s functions.
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Figure 4. Configuration for data-driven Green’s function retrieval. (a) We retrieve virtual receiver responses at 𝜕Di ,
i.e., G±,f (xVR, xS, t), from the reflection responses R and the (b) direct Green’s function Gd . Note that R is a function of
the upgoing Green’s function at the surface G−,f (x, xS, t)x3=z0

, see the main text. The Green’s functions are retrieved
as decomposed upgoing (−) and downgoing (+) functions. The Green’s functions in Figure 4a are derived from true
medium (without free surface), and they contain multiple reflections due to the heterogeneity in the medium, whereas
the direct Green’s function in Figure 4b can be estimated assuming the smoothed model.

3.1. Data-Driven Green’s Function Retrieval
The goal is to extrapolate the scattering response measured at the surface down in depth to the fracture
plane, without using the detailed subsurface information. Here we extrapolate the scattering response by
creating new wavefield as if the virtual receivers are located right on the heterogeneous fracture. We assume
that the location of the fracture is known a priori. This can be possible through dedicated seismic imaging,
e.g., migration of reflected waves [e.g., Nihei et al., 2000; Reshetnikov et al., 2010; Minato and Ghose, 2014a,
2015]. Furthermore, the reflection response is assumed to be without free-surface-related multiple reflections.
This can be achieved by preprocessing the data using, for example, the surface-related-multiple-elimination
technique [Verschuur et al., 1992].

The approach of data-driven Green’s function retrieval is discussed next. The 3-D approach for acoustic media
was derived using reciprocity theorems for one-way acoustic wavefield [e.g., Wapenaar et al., 2014a, 2014b].
Assuming that the initial estimates of direct wavefields are given and ignoring the horizontally propagat-
ing waves, they show that the one-way (upgoing and downgoing) Green’s functions from any position in
the medium can be retrieved using only reflection responses measured at the surface. More importantly, the
method will also correctly extrapolate the multiple reflections. The procedure is an iterative one involving the
estimation of the upgoing and downgoing parts of the so-called focusing function which focuses at the virtual
receiver position [e.g., Wapenaar et al., 2014a]. The approach uses an estimate of the direct wavefield as the
initial focusing function and then successively applies multidimensional crosscorrelation, time reversal and
time-dependent muting to the initial focusing function and the reflection responses. The details concerning
the physical interpretation of this iteration procedure are discussed earlier extensively [e.g., Wapenaar et al.,
2014b; van der Neut et al., 2015].

We have used one-way 2-D SH wavefields [e.g., Wapenaar et al., 2008] and modified the 3-D approach for
acoustic media to 2-D SH wave configuration. In Appendix B, we present the detailed iteration procedure to
estimate the Green’s functions. Here we briefly show how we retrieve the wavefield. Figure 4 shows the 2-D
configuration of the approach indicating x = (x1, x3) points a position vector in x1 − x3 plane. The two-way
Green’s function Gv2 ,f is defined as a particle velocity in x2 direction (v2) due to a point force in x2 direction
(f ). The upgoing and downgoing Green’s functions recorded at a virtual receiver on the fracture will be esti-
mated for a source located at the measurement surface, i.e., G±,f (xVR, xS, t) using only the reflection response
recorded at the measurement surface G−,f (x, xS, t)x3=z0

(Figure 4a). Here the superscripts VR and S indicate
“Virtual Receiver” and “Source,” respectively.

We first estimate the direct Green’s function Gd(x, xVR, t)x3=z0
due to the source located inside of the medium,

which will be at the position of the virtual receiver (Figure 4b). We estimate the direct Green’s function
Gd using smoothed velocity and density models. We also estimate the travel time of the first arrivals
between xVR and x at the surface as td(xVR, x0) which can be obtained from the first arrivals of Gd . We
then use the reflection response (R), the estimated direct Green’s function (Gd) as the initial estimates of
the focusing function, and the travel time of the first arrival td to iteratively update the focusing functions
(see equations (B1)–(B3) in Appendix B). Here we consider velocity-normalized one-way wavefields, which
corresponds to pressure-normalized one-way wavefields in acoustic media [Wapenaar et al., 2014a]. There-
fore, the reflection response R is defined as R(xS, x0, 𝜔) = (1∕2j𝜔𝜇−1)−1𝜕x3

G−,f (x, xS, 𝜔)x3=z0
. Furthermore, the

upgoing and downgoing Green’s functions are related to the two-way Green’s function as Gv2 ,f = G+,f + G−,f .
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Once the convergence is achieved through iterations (equations (B1) and (B2)), we then construct finally
the up- and downgoing Green’s function at the virtual receiver position G±,f (xVR, xS, t) using the estimated
focusing functions (equations (B5) and (B6)).

Note that the retrieved Green’s functions are biased by the transmission coefficients of the input direct Green’s
function [e.g., Broggini et al., 2014]. We calculate the direct Green’s function (Gd) right on the fracture without
considering the nonwelded interface. This implies that we retrieve upgoing and downgoing Green’s functions
right above the fracture plane (see also Appendix D).

3.2. Heterogeneous Compliance Estimation Using Scattered Wave
Having retrieved the virtual receiver responses at positions xVR right above the fracture plane, we can then
estimate the heterogeneous fracture compliance by directly using the method presented in Minato and Ghose
[2013, 2014a]. These earlier studies consider only primary reflections in a homogeneous medium. However,
the formulation there is still valid for multiply reflected waves as long as the radiation condition in the bottom
layer is sufficient. Characterization using multiple reflections is now possible because the Green’s function
retrieved using the Marchenko approach (previous section) correctly includes those multiple reflections. Here
we adapt the formulation of full elastic waves [Minato and Ghose, 2013, 2014a] for the 2-D SH wavefield (see
Appendix C for details).

The retrieved Green’s function G±,f from equations (B5) and (B6) is in the form of particle velocity v2. We can
estimate corresponding stress field as

𝜏±23(𝜔, kx) = ∓
𝜇kz,s

𝜔
ṽ±

2 (𝜔, kx), (7)

where kz,s =
√

(𝜔∕VS)2 − k2
x and ℑ(kz,s) ≤ 0. Once the stress field along the fracture plane is estimated,

one can estimate the heterogeneous compliance distribution. This requires solving the linear-slip boundary
condition as represented in the frequency-wave number domain (equation (C4) in Appendix C), assuming
that there is no upgoing wave in the lower medium:

Ã(𝜔, kx) = j𝜔𝜂T (kx) ∗ B̃(𝜔, kx), (8)

where ∗ denotes convolution in the wave number domain. The function Ã and B̃ are calculated from the stress
field at the fracture as

Ã = − 2𝜔
𝜇kz,s

𝜏−23, (9)

B̃ = 𝜏−23 + 𝜏+23. (10)

After inverse spatial Fourier transformation of equation (8), we obtain the heterogeneous compliance distri-
bution as,

𝜂T (x) =
Â(𝜔, x)

j𝜔
(

1 + 𝜖reg∕|B̂(𝜔, x)|) B̂(𝜔, x)
, (11)

where 𝜖reg is a regularization factor to stabilize the solution.

4. Numerical Modeling Results
4.1. Subsurface Model
We consider a two-layered elastic medium in which the second (bottom) layer includes a single heteroge-
neous fracture (Figure 5). The source and receiver arrays are installed in the first layer. The two boundaries (the
layer boundary and the fracture) create multiple reflections which impinge on the fracture multiple times.
This simple model offers useful insights on the concept that we propose here.

The heterogeneous fracture is represented by a random variation assuming Gaussian power spectral density,
PSD [Minato and Ghose, 2014c], for the tangential compliance along a large fracture with a length of 1000 m.
The average value of the tangential compliance is 1 × 10−9 (m/Pa). This order of magnitude for the tangential
compliance was suggested while evaluating faults on field seismic data at a single borehole [Worthington
and Hudson, 2000]. The compliance value changes along the fracture plane from 0.8 × 10−10 to 2.3 × 10−9.
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Figure 5. A two-layered subsurface, with a fracture located in the second (bottom) layer. A 1000 m long fracture with a
spatially heterogeneous tangential compliance distribution is considered. The source and receiver arrays are located at
the surface (𝜕D0).

The edge of the fracture compliance is tapered to zero indicating completely welded interface. The following
three models explain the variation of the tangential compliance:

1. Thin welded layer model (second term in equation (5)). When the fracture is made of a thin welded layer of a
soft material, the variation of the thickness and/or the shear modulus of the filling material gives the spa-
tial change in fracture compliance. For example, the inclusion of a 18 cm thick soil layer (VS = 300 m/s
and 𝜌 = 2000 kg/m3) gives the average value of 𝜂T (1 × 10−9 m/Pa) and a thickness change between
1.4 cm to 41 cm, or a change in shear wave velocity of the filling from 198 m/s to 1060 m/s corresponds to
the assumed compliance variation shown in Figure 5.

2. Random asperity model (first term in equation (5)). When the fracture is filled with fluids, the contact areas
at the fracture (i.e., asperities) play a major role in transmitting the shear energy. In this case, the variation
of the contact area from 1% to 20% along the fracture plane, keeping the mean contact radius constant at
0.3 m (i.e., a = 0.3, rw = 0.01 − 0.2 and VP∕VS ratio is 1.7), gives the assumed compliance variation.

3. A combination of (1) and (2), i.e., equation 5.

Detecting these variations is, therefore, key to infer the spatial change of the asperity distribution and/or the
infilling material.

The 451 point sources and 451 receivers are installed with a spacing of 4 m. We model the responses in the
frequency-wave number domain using the wdSDD method [Nakagawa et al., 2004], modified to include an
extra layer. Figure 6a shows the modeled reflection responses R at receivers located at 60 m interval due to
a source located at the center of the array. A Ricker wavelet of 40 Hz center frequency has been convolved.
The primary arriving event is a reflection from the boundary of two elastic layers, i.e., from the welded inter-
face. The second arriving event is a reflection from the heterogeneous fracture (nonwelded interface). The
rapid fluctuation in the amplitude of the second reflection event over the receiver array that we notice in
Figure 6a is due to heterogeneous fracture compliance. More multiple reflections between the welded and
the nonwelded interfaces arrive later on.

4.2. Green’s Function Retrieval
For data-driven Green’s function retrieval, we require an estimate of the direct Green’s function (Gd) due to the
source located inside of the medium, which will be at the position of the virtual receiver (equations (B1)–(B3)).
We calculate this using smoothed velocity and density models (Figure 6b). We do not need the detailed struc-
ture between the measurement surface and the fracture plane. More specifically, a smooth model can be used
as long as the smoothing does not affect the kinematics of propagation with respect to that of a real medium
[e.g., Wapenaar et al., 2014a]. We considered a simple overburden model. A medium with highly complex over-
burden requires an accurate estimation of input Gd . The limitation of the data-driven Green’s function retrieval
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Figure 6. (a) Modeled reflection responses R at the measurement surface, with 60 m receiver spacing. (b) Direct waves
Gd from a source at the virtual receiver modeled assuming a smoothed velocity and density model.

in case of a highly complex overburden and an alternative approach to estimate input Gd were studied earlier
[e.g., van der Neut et al., 2015; Vasconcelos et al., 2015].

The dotted red line in Figure 6b shows the picked first arrivals used as t𝜖d(x
VR, x0) to design the muting func-

tion in the iteration procedure (equation (B4)). Figures 7a and 7b show the retrieved wavefield using the
data-driven approach. The wavefield is retrieved as a common receiver gather, with the virtual receiver cre-
ated at the center of the fracture (see Figures 7a and 7b (bottom) for source-receiver configuration). Note that
only one iteration is sufficient for the convergence, for this simple model (see also Appendix D). The retrieved
downgoing waves (Figure 7b) consist of the incident wave from the source at the Earth’s surface and the mul-
tiple reflections which are incident on the fracture from above. The retrieved upgoing waves (Figure 7a) are
the reflections from the heterogeneous fracture of the downgoing (incident and multiply reflected) waves.
Therefore, these wavefields correspond to a situation when a virtual receiver is installed just above the fracture
plane. The directly modeled results are overlain in Figures 7a and 7b. The method could retrieve the wavefield
reasonably well, especially for the near-offset data. This can be seen in the difference gathers in Figures 7c and
7d. Retrieving the far-offset data requires a larger source-receiver aperture, as we will discuss in a later section.

Note that we calculate the difference gathers after applying a constant scaling factor to the retrieved wave-
field. Our retrieved wavefield has amplitudes different from those in the direct modeling results, because the
retrieved wavefield is biased by the transmission coefficient of the input direct wave (see Appendix D). One
can see that this bias, however, will be canceled to some extent in the deconvolution procedure involved
in the characterization method because of the same factor applied to both upgoing and downgoing waves
(see Appendix D).

We repeat the procedure and create the virtual receivers at multiple positions along the fracture plane.
Figure 8 is same as Figure 7, but for a common source gather with the source at the center of the array and the
virtual receivers located along the fracture plane. As in the retrieved common receiver gather (Figure 7), the
method could retrieve the wavefield well, especially at the near offsets. Figure 9 shows the retrieved traces
at zero offset and at 400 m offset of Figures 8a and 8b. One can see that the downgoing waves are always
better retrieved than the upgoing waves including the scattered waves (see second and later arriving events
in Figures 9b and 9d). The far-offset traces are less accurate, especially for the upgoing wavefield (Figure 9c).
These results are due to the effect of source and receiver apertures, which will be discussed in section 4.4.

It should be noted here that with this simple model the retrieval of upgoing waves is similar to the conven-
tional extrapolation method [e.g., Berkhout and Wapenaar, 1993], as we need to execute only one iteration in
the Green’s function retrieval. This can be confirmed in equation (D23) (Appendix D), whereby the retrieval of
upgoing wave is achieved by a simple extrapolation of the reflection responses R using the direct waves Gd as
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Figure 7. (a) Directly modeled and the retrieved upgoing Green’s functions at a virtual receiver located right on the
fracture plane. (b) Same as Figure 7a but for the downgoing Green’s function. (c) The difference between directly
modeled and the retrieved upgoing Green’s functions. (d) Same as Figure 7c but for the downgoing Green’s function.
All plots are displayed with a time gain of t7 applied to emphasize the later arrivals.

the extrapolation operators plus muting before first arrivals. However, our results clearly show that the
downgoing waves are correctly retrieved, including multiple reflections and scattering (Figures 9b and 9d).
This was not possible before with a conventional extrapolation method.

4.3. Compliance Estimation
We use the common-source gathers retrieved in the previous subsection (Figure 8) as input data for heteroge-
neous fracture characterization (equations (7)–(11)). Assuming that primary reflections and multiple reflec-
tions can be sufficiently separated in the time domain, the boundary condition (equation (8)) is locally satisfied
for the primary reflections and the multiples. Therefore, we estimate heterogeneous fracture compliances
separately using the primaries and the multiples with scattered waves which follow the reflections.
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Figure 8. Same as Figures 7a and 7b but for a common source gather, after retrieving the virtual receiver responses at
multiple positions on the fracture plane. All plots are displayed with a time gain of t9.

We first use only the primary reflections and their scattered waves (windowing between the first arrivals
and just before the secondary arriving events in Figure 8) to estimate the compliance distribution along the
fracture plane. Because we solve the linear-slip boundary condition at each frequency, we can estimate the
heterogeneous tangential compliance also at each frequency. Figure 10a shows this frequency-dependent
variation. At the low frequency range (below 20 Hz), the estimated compliance is smooth and inaccurate. This
is mainly because of the presence of the evanescent waves propagating along the fracture [e.g., Pyrak-Nolte
and Cook, 1987], which are not correctly extrapolated by our approach. Minato and Ghose [2013, 2014a] dis-
cussed the effect of evanescent waves when using a conventional extrapolation operator. The high-angle
scattered waves are also not correctly extrapolated due to the finite source-receiver aperture. The effect of the
edge of the source and receiver arrays distorts the retrieved wavefield further. These may cause the observed
variations with frequency. Note that the receiver spacing (spatial sampling) is also an important factor in
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Figure 9. The Green’s functions for the traces in Figure 8a and 8b. (a) Upgoing Green’s function at zero offset and
(b) downgoing Green’s function at zero offset. (c and d) Same as Figures 9a and 9b but for the records at 400 m offset.
All plots are displayed with a time gain of t7.

estimating the heterogeneous compliances. Minato and Ghose [2013] showed that when the receiver sam-
pling is not dense enough to capture the rapid variation of the wavefield, then the derived compliance
distribution is rather smooth.

Figure 10b shows the estimated tangential compliance at 50 Hz. One can see that the retrieved primary reflec-
tion has estimated reasonably well the true compliance distribution, especially in the near offset. Next, we
use only multiple reflections as input data (windowing all events including and below the secondary arriv-
ing events in Figure 8) to estimate the compliance distribution (Figure 10c). One can see that the compliance
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Figure 10. (a) Estimated tangential compliance using the retrieved primary reflections. (b) The result at 50 Hz in
Figure 10a. (c) Same as Figure 10b but using the retrieved multiple reflections. (d) Estimated tangential compliance
considering a simple compliance distribution, to illustrate the systematic differences.

value at 400 m is significantly better estimated than using the primary reflections alone. This is due to the
source-receiver aperture limitation, which will be discussed in the next section.

In order to show more clearly the advantages of using multiple reflections, we repeated the same procedure
described above, but considering a simple and laterally symmetric compliance distribution (Figure 10d). The
estimated compliance values tend to be smaller than the true values. This is possibly because (a) the regular-
ization required to stabilize the solution (equation (11)) affects the compliance values, (b) due to the effect of
the edge of the source and receiver arrays distorting the retrieved wavefield, and (c) due to the high-angle
scattering around the edge of the fracture being inaccurately extrapolated. However, it is clear that the esti-
mated fracture compliance using the multiple reflections (dashed blue line in Figure 10d) is better than that
obtained by using the primary reflections alone (solid blue line in Figure 10d), especially at the far offset.
The result using the multiple reflections shows that the compliant zone along the fracture is longer than that
estimated by the primary reflections.

4.4. Effect of Source and Receiver Apertures
We have illustrated that the data-driven Green’s function retrieval provides the virtual receiver response in
the subsurface including correctly the multiple (internal) reflections. We have also shown that using the
retrieved upgoing and downgoing wavefields, the spatially heterogeneous fracture compliance can be esti-
mated employing the inverse scattering approach. In this subsection, we discuss the effect of source and
receiver apertures in the reflection data on the retrieval of upgoing and downgoing Green’s functions.

In the first iteration (k = 0) of the retrieval process, the downgoing Green’s function and the upgoing Green’s
function are represented by a double and a single spatial integral along the measurement surface, respec-
tively (see equations (D1) and (D23)). From the method of stationary phase [e.g., Chako, 1965; Conde et al.,
2001], we find that the first iteration (k = 0) gives the correct total upgoing and downgoing Green’s func-
tions in our simple example (see Appendix D). We also find that due to the window function, there are limited
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number of stationary phase pairs which contribute to the retrieved Green’s functions. For example, the
first-order multiple downgoing reflection (Figure D1a) is retrieved from the primary reflection from the second
boundary (travel path of xS → z2 → x∗), the primary reflection from the first boundary (x∗ → z1 → y∗) and the
direct wave (y∗ → xVR), see Figure D3a. On the other hand, the corresponding first-order upgoing multiple
reflection (Figure D1b) is retrieved from the first-order upgoing multiple reflection (xS → z2 → z1 → xVR → x∗)
and the direct wave (x∗ → xVR), see Figure D5b. These interpretations imply that a larger source-receiver aper-
ture is needed to retrieve the first-order multiple upgoing reflections than the first-order multiple downgoing
reflections, because it is necessary to capture the first-order upgoing multiple reflections at the measurement
surface (compare between Figure D3a and Figure D5b). This discussion holds true also for other type of reflec-
tions (e.g., primary and higher-order upgoing multiple reflections). The observation coincides with the fact
that the retrieved upgoing wavefield (Figure 8a) is inferior to the downgoing wavefield (Figure 8b), especially
at the far source-receiver offsets.

Next, we compare the retrieval of different orders of upgoing reflections from the fracture (second boundary).
As one can see from Figures D5a and D5b, retrieving the primary reflections requires larger source-receiver
offsets because the primary reflections in our model have larger incident angles, and we require larger
source-receiver array to correctly capture them. On the other hand, the multiply reflected waves have
smaller incident angles and require less array length than when using the primaries (compare Figure D5a
and Figure D5b). This explains the result that the use of multiple reflections estimates better the fracture
compliance at the far source-receiver offsets (Figures 10c and 10d).

Note that in this section and in Appendix D, we consider only specular reflections which obey the Snell’s
law. However, the scattering due to the spatial heterogeneity of the fracture compliance does not obey the
Snell’s law, and the stationary phase to retrieve the scattered wave obeys different rules. In fact, the stationary
phase analysis for the scattered waves results in the stationary lines along the measurement surface which
requires the observation to be made with an infinitely long receiver array. This is because of the requirement
to capture the scattered energy which propagates in all directions from the scattering points, as shown in van
der Neut et al. [2014, 2015] and similar discussion can be found in source-receiver interferometry [Löer et al.,
2014]. However, in the case of heterogeneous compliance distribution with a Gaussian PSD, the scattered
energy is concentrated around the angle of the specular reflections [Minato and Ghose, 2014c]. Therefore,
the stationary line around the stationary pairs for the (multiple) specular reflections may contribute more
to retrieve scattered waves than other positions of the stationary line. This can explain the reason we have
retrieved the scattered wave so well even with a finite source-receiver aperture, especially at the near offsets
(Figure 7 and 8).

5. Conclusion

Nonwelded interface representation of a fracture provides an useful approach to characterize a thin,
weak zone (e.g., fracture, joint, and fault) in the subsurface. The thickness can be much smaller than the
wavelength. Such in situ estimation of heterogeneous fracture compliances is crucial to predict/evaluate
fracture-associated mechanical, hydraulic, and transport properties in the subsurface. The results of our lab-
oratory experiments establish that the frequency- and angle-dependent reflection responses from a single
fracture can be estimated quite accurately using the nonwelded interface representation. This possibility is,
therefore, exploited in the development of a characterization method for laterally heterogeneous fractures.

We have proposed a new method to characterize the heterogeneous fracture compliance using multiple
reflections, by coupling the procedure with the data-driven Green’s function retrieval. Two-dimensional
numerical examples illustrate that the wavefield along the fracture plane is well retrieved except at the far
offsets, without requiring the detailed structure/information between the measurement surface and the frac-
ture plane. The method of stationary phase applied to a single and a double spatial integral in the data-driven
Green’s function retrieval shows that the retrieval of the multiple upgoing reflections requires less array length
than that of the primary reflections. It also shows that retrieving the downgoing waves requires less array
length than retrieving the upgoing waves. These arguments explain our observation that the use of retrieved
multiple reflections leads to a better estimation of the heterogeneous fracture compliance than using primary
reflections alone, especially at far offsets on the fracture plane.

We considered in this study a simple subsurface consisting of only two layers. However, the method is appli-
cable to more complex multilayer Earth structures. In case of additional layers existing in the lower medium,
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it will be necessary to window the target (multiple) reflections in order to ensure the radiation condition that
is considered for estimating the heterogeneous compliance. In case of complex structures, furthermore, the
accurate estimation of the initial direct wavefields and multiple iterations will be required in order to retrieve
correctly the Green’s functions [e.g., Wapenaar et al., 2014a; Vasconcelos et al., 2015]. We assumed that the
position of the fracture is known using a priori processing, e.g., migration of the reflected waves. The error due
to the inaccurate fracture location may be corrected in a data-driven manner by minimizing the imaginary
components of the estimated compliance distribution, as illustrated in Minato and Ghose [2013]. Although
we have considered 2-D SH wave in this study, the method should be equally useful for P-SV wave measure-
ments, where the heterogeneous normal compliance can be estimated as well as the tangential compliance
[Minato and Ghose, 2014a]. This can be achieved by using a data-driven Green’s function retrieval approach
modified for vector waves [e.g., Wapenaar, 2014; Wapenaar and Slob, 2014; da Costa Filho et al., 2014, 2015].

Appendix A: Calculation of Reflection Coefficients in the Laboratory Experiments

We show here the theoretical PP reflection coefficient of a nonwelded interface in a homogeneous medium
[Chaisri and Krebes, 2000]:

RPP =
[
𝜔2𝜂N𝜂T KL + 2i𝜔𝜌𝜂

(
𝜂N𝛾

2 − 𝜂T𝜒
2𝜉2

)]
D−1, (A1)

where,

D =
(

2𝜌𝜉 − i𝜔𝜂NK
) (

2𝜌𝜂 − i𝜔𝜂T K
)
, (A2)

𝜒 = 2𝜌V2
S p, 𝛾 = 𝜌

(
1 − 2V2

S p2
)
, (A3)

𝜉 =
cos 𝜃PP

VP
, 𝜂 =

cos 𝜃PS

VS
, (A4)

K = 𝛾2 + 𝜒2𝜉𝜂, L = 𝛾2 − 𝜒2𝜉𝜂. (A5)

Here p is the ray parameter (p = sin 𝜃PP∕VP) and 𝜃PP and 𝜃PS are the angle of reflected P wave and S wave,
respectively.

Appendix B: Data-Driven Green’s Function Retrieval Using Marchenko Equation:
2-D SH Wave Configuration

We briefly show the data-driven Green’s function retrieval using Marchenko equation in a 2-D SH wave con-
figuration. Here we use the decomposed Marchenko equation in acoustic media [Wapenaar et al., 2014b] and
transform the field variables into those for a 2-D SH wave configuration.

The procedure is an iterative one, in order to estimate the upgoing and downgoing parts of the so-called
focusing function (f±1 and its later arrivals M+) which focuses at the virtual receiver position xVR on the fracture
surface 𝜕Di (Figure 4):

M+
k

(
xS, xVR,−t

)
= ∫

𝜕D0

dx0 ∫
t

−t𝜖
d(xVR ,x0)

R
(

xS, x0, t − t′
)

f−1,k
(

x0, xVR,−t′
)

dt′, (B1)

f−1,k+1

(
xS, xVR, t

)
= f−1,0

(
xS, xVR, t

)
+ ∫

𝜕D0

dx0 ∫
t

−t𝜖
d(xVR ,x0)

R
(

xS, x0, t − t′
)

M+
k

(
x0, xVR, t′

)
dt′, (B2)

f−1,0
(

xS, xVR, t
)
= ∫

𝜕D0

dx0 ∫
−t𝜖

d(xVR ,x0)

−∞
R
(

xS, x0, t − t′
)

T inv
d

(
xVR, x0, t′

)
dt′, (B3)

where the reflection responses R is defined as the responses with sources and receivers on the mea-
surement surface 𝜕D0 (Figure 4), with R(xS, x0, 𝜔) = (1∕2j𝜔𝜇−1)−1𝜕x3

G−,f (x, xS, 𝜔)x3=z0
. We approximate the

inverse of the transmission response T inv
d to be its direct arrival; T inv

d (xVR, x0, t) ≈ Gd(x, xVR,−t)x3=z0
. In order

to derive equations (B1) to (B3), we use the causality of the Green’s function and the focusing functions
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[Wapenaar et al., 2014b]. Therefore, the equations (B1)–(B3) are evaluated only for t < td(xVR, xS), and we
have the relation M+

k (x
S, xVR,−t) = f−1,k+1(x

S, xVR, t) = 0 for t ≥ td(xVR, xS). Here td(xVR, x0) is the travel time of
first arrivals between xVR and x at the surface. The travel time t𝜖d in equations (B1)–(B3) is used to design the
muting function:

t𝜖d = td − 𝜖, (B4)

where 𝜖 is a small positive constant.

Once we estimate the focusing functions assuming that the iterations converge, we can retrieve the upgoing
and downgoing Green’s functions recorded at the virtual receiver (xVR) located inside the medium (𝜕Di) from
a source located on the measurement surface (𝜕D0):

G+,f (xVR, xS, t
)
= f+1

(
xS, xVR,−t

)
− ∫

𝜕D0

dx0 ∫
t

−∞
R
(

xS, x0, t − t′
)

f−1
(

x0, xVR,−t′
)

dt′, (B5)

G−,f (xVR, xS, t
)
= −f−1

(
xS, xVR, t

)
+ ∫

𝜕D0

dx0 ∫
t

−∞
R
(

xS, x0, t − t′
)

f+1
(

x0, xVR, t′
)

dt′, (B6)

where the focusing function f+1 can be constructed from its later arrivals as f+1,k(x
S, xVR, t) = T inv

d (xVR, xS, t) +
M+

k−1(x
S, xVR, t).

Appendix C: Heterogeneous Compliance Estimation Using Scattered Waves:
2-D SH Wave Configuration

The formulation of heterogeneous compliance estimation for full elastic wave is presented using the one-way
wavefield equation [Minato and Ghose, 2013]. The one-way wavefield equation is derived by considering lat-
erally invariant medium, representing the two-way wavefield equation in a matrix form and obtaining the
eigenvector matrix of an operator matrix [e.g., Woodhouse, 1974; Ursin, 1983; Wapenaar and Berkhout, 1989].
The eigenvector matrix is then used to decompose the two-way wavefield into the one-way (upgoing and
downgoing) wavefield.

The equation for one-way wavefield for 2-D SH waves can be obtained considering the acoustic case
[e.g., Wapenaar and Berkhout, 1989] and transforming the field variables to those for 2-D SH wave. The compar-
ison of the variables in the matrix operator between the acoustic formulation and the 2-D SH wave formulation
can be found in, e.g., the Appendix B of Wapenaar et al. [2008]. In the frequency-wave number domain, the
one-way wavefield equation is written as, (

ṽ2

−𝜏23

)
= L

(
ṽ+

2
ṽ−

2

)
, (C1)

where L is a composition matrix (eigenvector matrix) defined as

L =
(

1 1
𝜇kz,s∕𝜔 −𝜇kz,s∕𝜔

)
. (C2)

In the frequency-wave number domain, the boundary condition of a nonwelded interface (equation (2)) can
be written as,

ṽ+
2,l = ṽ+

2,u + ṽ−
2,u + i𝜔𝜂T ∗

(
𝜏+23,u + 𝜏−23,u

)
, (C3)

here ∗ denotes convolution in the wave number domain and subscripts u and l indicate, respectively, that the
quantities are at just above (upper medium) and below (lower medium) the interface. To derive equation (C3),
we assume that there is no upgoing wave in the lower medium. This condition is useful for this study
because in the data-driven Green’s function retrieval, we retrieve wavefields just above the interface (i.e., ṽ±

2,u).
Furthermore, we characterize the fracture compliance from the interaction between downgoing waves which
impinge on the fracture (ṽ+

2,u or 𝜏+23,u) and correspondingly generated upgoing waves (ṽ−
2,u or 𝜏−23,u). When

heterogeneity exists in the lower medium (e.g., additional layers), one can window the target (multiple)
reflections in order to ensure the radiation condition.
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The boundary condition (equation (C3)) are then represented by the stress field in the upper medium (i.e.,
𝜏±23,u) using equations (C1), (C2), and (7):

− 2𝜔
𝜇kz,s

𝜏−23,u = j𝜔𝜂T ∗
(
𝜏+23,u + 𝜏−23,u

)
, (C4)

where we assume the same medium parameters for the upper and the lower media and we use the relation
of the continuation of stress field (𝜏+23,l = 𝜏+23,u + 𝜏−23,u).

Appendix D: Stationary Phase Analysis
D1. Downgoing Green’s Function
We show here, using the stationary phase analysis, the effect of the source and receiver apertures on the
retrieval of the Green’s function. Broggini et al. [2014] showed the stationary phase analysis for an alternative
expression of the data-driven Green’s function retrieval, which results in a single spatial integral. We apply the
method of stationary phase to equations (B5) and (B6), which results in a single and a double spatial integral,
respectively. The method of stationary phase applied to equations (B5) and (B6) offers key insight on the effect
of the source-receiver aperture on the retrieval of upgoing and downgoing Green’s functions individually.

We assume a simple geometry of a horizontal source-receiver aperture and two boundaries in the subsurface.
In the following analysis, we ignore the refraction effect at the boundary. However, our raypath discussion is
also useful for more complex subsurface structures.

From equation (B5), the first iteration (k = 0) gives the retrieved downgoing Green’s function as,

Ĝ+,f (xVR, xS, 𝜔
)
= Ĝd

(
xS, xVR, 𝜔

)
−∫ ∫

𝜕D0

dx0dy0R̂
(

xS, x0, 𝜔
) [

R̂∗ (x0, y0, 𝜔
)

Ĝd

(
y0, xVR, 𝜔

)]
w(x0 ,xVR ,t)

, (D1)

wherê indicates that the quantities are considered in the frequency domain. The symbol [⋅]wd(x0 ,xVR ,t) means
that the quantity inside the bracket is windowed in the time domain according to the window function
wd(x0, xVR, t), where wd(x0, xVR, t) = 1 for t >−t𝜖d(x0, xVR) and wd(x0, xVR, t) = 0 for t ≤ −t𝜖d(x0, xVR). Note that
x0 = (x1, x3)x3=z0

and y0 = (y1, y3)y3=z0
are on the measurement surface 𝜕D0.

We substitute the asymptotic Green’s function for Ĝd and the reflection response on the measurement surface
R̂, assuming a simple two-layered model.

Ĝd

(
xS, xVR, 𝜔

)
= 𝜏d𝜇

−1
(

xVR
)

Ĝ0(rd, 𝜔), (D2)

Ĝ0(rd, 𝜔) = j𝜔
exp

(
−j

(
krd + 𝜋∕4

))√
8𝜋krd

, (D3)

rd =
√(

xVR
1 − xS

1

)2 +
(

xVR
3 − xS

3

)2
, (D4)

where k = 𝜔∕VS and 𝜏d indicates any transmission coefficient which is used to calculate Gd .

R̂(x, xS, 𝜔) =
∞∑

n=1

R̂(n)(x, xS, 𝜔), (D5)

where

R̂(n)(x, xS, 𝜔) =
jkA(n)z(n)0|x(n) − xS| exp

(
−j

(
k|x(n) − xS| + 𝜋∕4

))√
2𝜋k|x(n) − xS| , (D6)

where x(n) is the mirror image of x with respect to the boundaries [Broggini et al., 2014]. For example, x(0)

is the mirror image of x with respect to the first boundary (which indicates the primary reflection from
the first boundary), x(1) is the mirror image with respect to the second boundary (the primary reflection
from the second boundary), and x(2) is the mirror image of x with respect to the first and second bound-
ary (the first-order multiple reflection). A(n) indicates the amplitude coefficient for the nth reflection event,
e.g., A(0) = r+1 , A(1) = 𝜏+1 r+2 𝜏

−
1 and A(2) = 𝜏+1 (r

+
2 )

2r−1 𝜏
−
1 , where r±1,2 and 𝜏±1,2 are the reflection/transmission

coefficients of the first/second boundary for the downgoing (+) / upgoing (−) wave, respectively.
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Substituting equation (D2) and (D5) into equation (D1) gives,

Ĝ+,f (xVR, xS, 𝜔) = 𝜏d𝜇
−1(xVR)

[
Ĝ0(rd, 𝜔) −

∞∑
n=1

∞∑
m=0

F(n,m)exp (−j𝜋∕4)

]
, (D7)

where,

F(n,m) = ∫ ∫
∞

−∞
dx1dy1f (x1, y1)exp

(
−jk𝜙(x1, y1)

)
, (D8)

f (x1, y1) =
k𝜔A(n)A(m)

(
xS(n)

3 − x3

)(
x(m)

3 − y3

)
r(n)xs

3∕2
r(m)

xy
3∕2

r1∕2
yR

j

2𝜋
√

8𝜋k
, (D9)

and

𝜙(x1, y1) = r(n)xs − r(m)
xy + ryR, (D10)

where r(n)xs , r(m)
xy , and ryR are functions of (x1, y1):

r(n)xs (x1) =
√(

x1 − xS(n)
1

)2
+
(

x3 − xS(n)
3

)2
, (D11)

r(m)
xy (x1, y1) =

√(
y1 − x(m)

1

)2
+
(

y3 − x(n)3

)2
=
√(

x1 − y(m)
1

)2
+
(

x3 − y(n)3

)2
, (D12)

ryR =
√(

y1 − xVR
1

)2 +
(

y3 − xVR
3

)2
. (D13)

Note that we consider the measurement surface to be at zero depth (i.e., z0 = x3 = y3 = 0).

The stationary points x∗1 , y∗1 satisfy 𝜕𝜙∕𝜕x1 = 𝜕𝜙∕𝜕y1 = 0. This relation can be written as,

(
x∗1 − xS

1

)
r(n)xs

−1 =
(

x∗1 − y∗1
)

r(m)
xy

−1
,

(
y∗1 − xVR

1

)
ryR

−1 =
(

y∗1 − x∗1
)

r(m)
xy

−1
. (D14)

Note further that we take into consideration the effect of the window function wd(x0, xVR, t) in equation (D1).
This can be achieved by posing an additional constraint on the stationary phase pairs as,

ryR + rxR > r(m)
xy , (D15)

where,

rxR =
√(

x1 − xVR
1

)2 +
(

x3 − xVR
3

)2
. (D16)

The values of the second-order derivatives of 𝜙 at the stationary points become,

a = 𝜕2𝜙

𝜕x2
1

|||||x∗1 ,y
∗
1

= r(n)xs
−1

(
1 −

(
x∗1 − xS

1

)2
r(n)xs

−2
)
− r(m)

xy
−1

(
1 −

(
x∗1 − y∗1

)2
r(m)

xy
−2
)
, (D17)

b = 𝜕2𝜙

𝜕y2
1

|||||x∗1 ,y
∗
1

= ryR
−1

(
1 −

(
y∗1 − xVR

1

)2
ryR

−2
)
− r(m)

xy
−1

(
1 −

(
y∗1 − x∗1

)2
r(m)

xy
−2
)
, (D18)

c = 𝜕2𝜙

𝜕x1𝜕y1

|||||x∗1 ,y
∗
1

= −r(m)
xy

−1
(

1 −
(

x∗1 − y∗1
)2

r(n)xy
−2
)
, (D19)
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Figure D1. (a) Source-receiver configuration and configurations of downgoing direct wave (red line), first-order
downgoing multiple reflection (black solid line), and second-order downgoing multiple reflection (dotted line).
(b) The primary upgoing reflection, first- and second-order multiple upgoing reflections have the same travel paths as
the downgoing waves in Figure D1a but multiplied with the corresponding reflection coefficients at the second
boundary.

Assuming that the stationary phase pair (x∗1 , y∗1 ) exists under the fixed values of m and n, the method of sta-
tionary phase for a double integral [e.g., Chako, 1965; Conde et al., 2001] approximates the response of F
(equation (D8)) as,

F(n,m) ≈ 2𝜋f
(

x∗1 , y∗1
) exp

(
−jk𝜙

(
x∗1 , y∗1

))
k
√|ab − c2| = j𝜔A(n)A(m) exp

(
−jk𝜙

(
x∗1 , y∗1

))√
8𝜋k𝜙

(
x∗1 , y∗1

) . (D20)

Here we consider only the stationary phase pair which produces the causal response (i.e., 𝜙> 0).

Summation of contributions from all stationary phase pairs (x∗1 , y∗1) from all possible combinations of mul-
tiple reflections (i.e., infinite number of m and n) in equation (D7) results in the retrieved upgoing Green’s
function as:

Ĝ+,f (xVR, xS, 𝜔) ≈ 𝜏′dj𝜔𝜇−1(xS)
[

exp
(
−j

(
krd + 𝜋∕4

))√
8𝜋krd

−
∑
x∗1 ,y

∗
1

A(n)A(m)exp
(
−j

(
k𝜙

(
x∗1 , y∗1

)
+ 𝜋∕4

))√
8𝜋k𝜙

(
x∗1 , y∗1

)
]
, (D21)

where A(n) and A(m) change with the stationary phase pairs and we redefine a transmission coefficient as
𝜏′d = 𝜏d𝜇(xS)𝜇−1(xVR).

Downgoing direct wave. We check the retrieval of a downgoing direct wave (travel path of xS → xVR in
Figure D1a). Equation (D21) shows that the stationary phase pairs (x∗1 , y∗1), which give the travel time of the
direct wave (i.e., 𝜙(x∗1 , y∗1) = rd), retrieve the direct downgoing wave. From equations (D10), (D14) and (D15),
it is straightforward to show that there is only one stationary phase pair to create the direct wave travel time
(Figure D2a). These are the two sets of primary reflections from the first boundary (n = m = 0, xS → z1 → x∗

and x∗ → z1 → y∗, where y∗ = xS ) and the direct wave (xS → xVR). Note that the two sets of primary
reflections and any order of multiple reflections from the second boundary (n = m, n ≥ 1) give the same
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Figure D2. (a) The stationary phase pair (x∗, y∗) which retrieves the direct downgoing wave (n = m = 0). ryR, r(m)
xy and

r(n)xs are the travel paths required to evaluate the stationary phase contributions (see the main text for details). (b) The
stationary phase pairs (n = m, n ≥ 1) for the direct downgoing waves, which are excluded by the window function.

travel time (Figure D2b). These stationary phase pairs are, however, excluded due to the constraint shown in
equation (D15) and removed by the window function in the retrieval process. The remaining amplitude of the
retrieved direct wave is, therefore, 𝜏′d(1 − (r+1 )

2).

First-order downgoing multiple reflection. Next, we check the retrieval of the first-order downgoing multiple
reflection (travel path of xS → z2 → z1 → xVR in Figure D1a). From a discussion similar to that for the direct
wave, we understand that there is only one stationary phase pair which produces the response (Figure D3a).
It is the combination of the primary reflection from the second boundary (n = 1), the one from the first
boundary (m = 0) and the direct wave. The other stationary phase pairs which produce the same travel
time (Figure D3b) are excluded and removed during the retrieval process. The amplitude of this event is
−𝜏′d𝜏

+
1 𝜏

−
1 r+2 r+1 .

Higher-order downgoing multiple reflections. It is straightforward to show that the higher-order (kth order)
downgoing multiple reflections are retrieved by the following events: the primary reflection from the first
boundary (m = 0), the multiple reflections (n = k), and the direct wave (Figure D4). The amplitude of this
event is −𝜏′d𝜏

+
1 𝜏

−
1 r+2 r+1 (r

−
1 r+2 )

k−1.

In summary, the total downgoing response is written as (considering the relation 1 − (r+1 )
2 = 𝜏+1 𝜏

−
1 and

r+1 = −r−1 ),

Ĝ+,f (xVR, xS, 𝜔) = 𝜇−1(xS)
(
𝜏′d𝜏

−
1

) (
𝜏+1 Ĝ0(rd, 𝜔) + 𝜏+1 r+2 r−1 Ĝ0

(
r(1), 𝜔

)
+ 𝜏+1

(
r+2
)2 (

r−1
)2

Ĝ0

(
r(2), 𝜔

)
+…

)
,

(D22)

where r(k) is the distance of propagation of the kth-order downgoing multiple reflection. The right-hand side
of equation (D22) is the total downgoing wave at the virtual receiver from a surface source, scaled by the
factor of 𝜏′d𝜏

−
1 . The value of 𝜏′d is arbitrarily selected in the input direct wave. Selecting it as an inverse of

the transmission response (i.e., 𝜏′d = (𝜏−1 )
−1) gives the true-amplitude total downgoing wave [e.g., Broggini

et al., 2014].

D2. Upgoing Green’s Function
In the first iteration (k = 0) of the retrieval of the upgoing Green’s function, we have from equation (B6) the
following:

Ĝ−,f (xVR, xS, 𝜔
)
= −∫

𝜕D0

dx0

[
R̂
(

xS, x0, 𝜔
)

Ĝ∗
d

(
x0, xVR, 𝜔

)]
w(x0 ,xVR ,−t)

+ ∫
𝜕D0

dx0R̂
(

xS, x0, 𝜔
)

Ĝ∗
d

(
x0, xVR, 𝜔

)
.

(D23)
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Figure D3. (a) The stationary phase pair (x∗, y∗) which retrieves the first-order multiple downgoing waves (m = 0,
n = 1). See the legend in Figure D2a for the line colors. (b) The stationary phase pairs (m = k, n = k + 1, k > 0) for the
first-order multiple downgoing waves, which are excluded by the window function.

The two terms on the right-hand side of equation (D23) have the same form but opposite polarities. How-
ever, due to the causality of the focusing function f−1 (see Appendix B), the first term of equation (D23) is
muted for t ≥ td . This implies that when we consider only the causal response, the amplitudes of the two
terms before the first arrivals (td) cancel each other, leaving only the arrivals later than td . In our model, the
remaining arrivals are in the part of the second term of equation (D23); these are related to the cross correla-
tion between the reflections from the second boundary and the direct wavefield. This type of cancelation of
events is extensively discussed earlier [e.g., Wapenaar et al., 2012, 2014b; Broggini et al., 2014]. The second term
is a single spatial integral. The method of stationary phase for this type of spatial integral was applied before
[Broggini et al., 2014], and we do not repeat it here. The phase function of the remaining arrivals of the second
term (counter part of equation (D10)) is 𝜙(x1) = r(n)xs − rxR. The contribution to create the primary reflection
(Figure D5a) comes from the primary reflection from the second boundary and the direct wave (amplitude
term is 𝜏′d𝜏

+
1 𝜏

−
1 r+2 ). The first- and higher-order multiple upgoing waves (Figure D5b and D5c) are retrieved

from the same order of multiple upgoing waves and the direct wave (amplitude term is 𝜏 ′d𝜏
+
1 𝜏

−
1 r+2 (r

−
1 r+2 )

k).

Figure D4. The stationary phase pair (x∗, y∗) which retrieves the higher-order (kth) multiple downgoing waves (m = 0,
n = k, k > 0). See the legend in Figure D2a for the line colors.
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Figure D5. The stationary phase (x∗) which retrieves (a) the primary upgoing wave (n = 1), (b) the first-order multiple
upgoing waves (n = 2), and (c) the higher-order multiple upgoing waves (n = k, k > 1).

Therefore, similar to the downgoing Green’s function, we obtain

Ĝ−,f (xVR, xS, 𝜔) = 𝜇−1(xS)
(
𝜏′d𝜏

−
1

) (
𝜏+1 r+2 Ĝ0(rd, 𝜔) + 𝜏+1 (r

+
2 )

2r−1 Ĝ0(r(1), 𝜔) + 𝜏+1
(

r+2
)3 (

r−1
)2

Ĝ0(r(2), 𝜔) +…
)
.

(D24)

This is the total upgoing Green’s function scaled by 𝜏 ′d𝜏
−
1 .
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